Journal of Plant Protection and Pathology

Journal homepage & Available online at: www.jppp.journals.ekb.eg

Surface and Subsurface Foraging Activity of Subterranean Sand Termite, *Psammotermes hybostoma*, Desneux (Isoptera: Rhinotermitidae) at El-Fayoum Governorate, Egypt

Abd El-Qawi, A. M.^{1*}; R. H. A. Solaiman² and Nadia A. Abd El-Latif¹

Cross Mark

¹Plant Protection Research Institute, ARC, Dokki, Giza, Egypt. ²Plant Protection Dept., Faculty of Agriculture, Fayoum University, Egypt.

ABSTRACT

Surface and subsurface foraging activity of the subterranean termite, *Psammotermes hybostoma* Desneux (Isoptera: Rhinotermitidae) was examined for one year extended from October 2018 until September 2019 at El-Fayoum district, El-Fayoum governorate, Egypt. The surface foraging activity was estimated using a perforated plastic rectangular box trap, while subsurface foraging activity was determined using a new design column trap (300 cm height, and 7.2 cm diameter). The column trap was divided into five levels with suitable barriers of reinforced cork. Results showed that food consumption, was the lowest during winter (13.23 g./trap/m²), while it was the highest during spring (76.1 g./trap/m²). Changes in soil translocation were almost similar to those previously mentioned for food consumption. The highest seasonal means of subsurface food consumption was 1806.92 g./5 column traps during autumn throughout the four levels, while the lowest seasonal means was occurred during spring (1019.15 g./5 column traps). The total annual food consumption increased gradually from 2921.34 g./5 column traps at the first level to 8533.82 g./5 column traps at the fourth one, then it decreased slightly to (7383.22 g./5 column traps) at the fifth level. The total annual number of captured workers increased gradually from the first level (98148 workers/5 column traps) reach the peak at the third level (164178 workers/5 column traps), then it decreased gradually from the fourth level (144636 workers/5 column traps) to the 5th level (107874 workers/5 column traps).

Keywords: subterranean termite, Psammotermes hybostoma, surface activity, subsurface activity, traps.

INTRODUCTION

Termites are a group of social insects that belong to order Isoptera. Individuals in each species are differentiated into various morphological forms or castes that live in highly organized societies or colonies (Harris, 1961; Brain, 1978; Rizk and Salman, 1984; El-Sherif, et al. 2009 and Abd El-Latif, 2003 and 2013). They are important pests in many countries particularly in the arid tropics and subtropics (Emerson, 1955 and Harris, 1961 and 1967). Psammotermes hybostoma Desneux one of subterranean termites that feeds on any wood, sound or decayed, lying on or in contact with the ground (Hafez, 1980). In Egypt, this species occurs chiefly in upper Egypt and it was also collected from Giza, El-Fayoum, Minia, Assuit and Aswan governorates as well as from Kharga, Dakhla and Baharia Oases. It is one of the most economic species causing considerable damage to houses (Kaschef and El-Sherif, 1971 and Ali, 1980). Several scientists were measured surface activity of subterranean termites using various bait materials which are either presented on soil surface or completely or partially buried. These baits were placed sometimes inside a plastic rectangular box trap or covered with plates or surrounded by polyvinyl chloride (P.V.C.) collars (Brain, 1978; Wood, 1978; Abdel Wahab, et al. 1983; Salman, et al. 1987; El-Sebay, 1991; Ahmed, 1997 and Abd El-Latif, 2003 & 2013). However few studies have been published on subsurface activity. Therefore the present work aim to study the surface and subsurface foraging activity and the relative efficacy of different parameters used for the assessment of foraging activity.

MATERIALS AND METHODS

The surface and subsurface activity of *P*. *hybostoma* was examined for a year that extended from the 1st of October 2018 until the 30th of September 2019 at El-Lahoun village, El-Fayoum district, El-Fayoum governorate, Egypt. The selected experimental location was heavily infested with *P*. *hybostoma* and untreated with any termiticides. From this location, area of 35 m² was chosen for the study and carefully cleaned from any existing weed or cellulose materials. Thirty-five traps were distributed throughout the experimental area (7 rows × 5 columns) with 1 m distance between each two traps from all directions (Fig. 1). These traps were used to estimate the surface and subsurface activities.

Fig. 1. Design of traps distribution

1- Surface foraging activity:

Thirty plastic rectangular box traps (Abd El-Latif, 2013) were used for studying surface foraging activity parameters. The trap consists of a plastic rectangular box measuring 25 cm L \times 15 cm W \times 12 cm H. with plastic lid. The sides of the trap were punctured with 10 holes, each 5 mm in diameter for termite access. Baits consisted of corrugated cardboard paper that was prepared in rolls shape, dried at 105 °C for 24hr in electric oven. Each trap was provided with 150 g of the previous baits which weighed and then soaked in water until saturation (Fig. 2A). Traps were buried into the soil at 30 cm depth whereas every trap occupied the same position throughout the whole period of the experiment (Fig. 2B). As a half monthly routine, buried traps were carefully removed from the soil with the aid of shovel. All contents of each trap (cardboard rolls remnants and translocated soil by termite workers and termite individuals (Fig. 2C) were put separately in plastic bags. Plastic traps were provided with the same baits and held back in the soil at the same position (Abd El-Latif, 2013). Plastic bags were transferred to the laboratory for examination to determine the percentage of traps visited by the termite species; count and classify the captured termite individuals into different castes (workers, soldier and alates); later, collecting soil particles and cardboard rolls remnants separately and drying them at 105 C° for 24 h in an electric oven, and weighed. Obtained dry weight of soil particles represented translocated soil by termite (Collins and Nutting, 1973 and Abd El-Latif, 2003 & 2013). Dry weight of cardboard rolls before burring the trap into the soil after removing dry weight of cardboard remnants represented food consumption (La Fage et al., 1973; Brain, 1978; El-Sebay, 1991 and Abd El-Latif and Solaiman, 2014).

Fig. 2. A) Plastic box trap; B) Trap position; C) Infested trap contents.

2- Subsurface foraging activity:

A cylindrical plastic box column trap (Abd El-Latif and Solaiman, 2014) was used with some modifications in design and height to estimate subsurface foraging activity parameters. This design consisted of cylindrical thermoplastic polymer box column measuring 3 inches (7.2 cm) in diameter and 300 cm in height. This trap was contained 3 main separated parts each measuring 100 cm in height. These parts were connected with together by sleeves and screws, and each part was divided into two divisions with suitable barriers of reinforced cork covered with strips of aluminum foil to prevent completely termite individuals of foraging between both divisions (fig. 3A).

Each column included five levels; the first level length was 30 cm from soil surface to 30 cm depth and represents the surface activity. The other levels measuring 200 cm with 50 cm length for each level. The rest of column (70 cm) was viewed above soil surface to lift it from soil. 5 cylindrical column traps were distributed in the experimental area with 30 plastic rectangular box traps and their numbers were 7, 9, 18, 27 and 29. All levels were filled with a clean roll of corrugated cardboard paper (150 g / level). Before introducing the cardboard rolls into the column trap the formers were dried at 105 C° for 24 h in an electric oven and weighed then soaked in water until

saturation. The column trap was buried in a vertical position to the depth of 230 cm into a hole with the aid of an auger on October 1st, 2018 then was covered with soil as shown in (Fig. 3B).

Fig. 3. A) Cylindrical column trap parts; B) Cylindrical column trap position

As a half monthly routine, buried column traps were carefully lifted from the soil, then the cardboard rolls were taken off column and replaced with new ones. Every level's roll and translocated soil were introduced into a separated plastic bag and transferred to the laboratory for examination to estimate subsurface activity at different depths. Rolls and translocated soil were treated as above mentioned in surface activity to determine number of captured termites, caste composition, translocated soil and food consumption.

Statistical analysis:

Simple correlation and regression coefficients were estimated for the relation between foraging activity parameters (number of captured termites, soil translocation and food consumption) and some weather estimates (max., min., and mean temperatures for air and soil and mean RH% using SPSS Statistics version 25.0.

RESULTS AND DISCUSSION

1- Surface foraging activity parameters:

The half monthly and seasonal means of food consumption, soil translocation, percentage of infested traps and number of captured termites at the study location throughout the year of the study are shown in Tables (1 and 2). **Food consumption:**

This parameter is defined as the actual dry weight of consumed corrugated cardboard/trap/in grams (Abd El-Latif, 2003). As seen from Table (1), food consumption was low in winter and increased gradually during spring until it reached the 1st peak in the 1st half of May with 111 g./trap/m², then it decreased gradually during summer to record about 31 g./trap/m² in the first half of August, after which it increased progressively during autumn until it reached a 2nd peak of about 89 g/trap/m² in the second half of October, food consumption tended to decline to about 23 g./trap/m² by the end of autumn.

Concerning the seasonal foraging activity means, as represented by food consumption, was relatively low during winter (13.23 g./trap/m²), representing 6.7% of the total annual food consumption, while, food consumption was relatively higher during spring (76.1 g./trap/m², representing 38.8% of the total annual food consumption). Food consumption is more or less moderate during both summer and autumn; it recorded two distinct peaks; one in the 1st half of May and the other in the second half of October. Several authors assessed the surface foraging activity of different species of subterranean termites depending on the food consumption (Brain, 1978; Ali *et al.*, 1982; El-Sebay, 1993; El-Sherif *et al.*, 2009; Abd El-Latif, 2013 and Abd El-Latif and Solaiman, 2014).

These results are in agreement with those obtained by Abd El-Latif, 2013 and in partial agreement with those obtained by Ali *et al.*, (1982). At the same trend Abd El-Wahab *et al.*,1983 recorded the highest food consumption of *P. hybostoma* at April and August at Kom-ombo Aswan governorate. Salman *et al.*, (1987) in the new valley found that foraging level of *P. hybostoma* was high in summer months with three peaks recorded during June, July and September **Soil translocation:**

Data in Table (1) refer that the changes in soil translocation were almost similar to those previously mentioned for food consumption. Soil translocation was low

during winter, and increased gradually during spring months to record the 1st and highest peak (220 g./trap/m²) in the first half of May. After that, the activity began to decrease gradually throughout summer months where the translocated soil reached 35 g./trap/m² in the 1st half of August, it increased progressively during autumn until it reached the 2nd peak with 144 g./trap/m² in the 2nd half of October and declined again to about 28 g./trap/m² by the end of autumn. Generally, the highest seasonal means of soil translocation took place during spring (155 g./trap/m², represented 46.3 % of the total annual soil translocation) and the lowest seasonal means of soil translocation occurred during winter (about 25 g./trap/m², represented 7.4 % of the total annual soil translocation). These results are in agreement with Abd El-Latif, 2013 who stated that the highest mean of soil translocation took place in spring. Also, these results are in partial agreement with El-Bassyoni, 2001 who mentioned that the maximum soil translocation occurred in September and October, while the minimum soil translocation occurred in January. Abd El-Latif, 2003 found that the highest rates took place in summer.

Table	1. Half	-monthl	y and	d sea	sonal	means	s of	food
	consu	mption	and	soil	trans	locatio	n b	у <i>Р</i> .
	hybos	toma at	El-Fa	youm	a gove	rnorat	e for	one-
	year	extend	ed f	rom	Octo	ober	2018	to to
	Septe	mber 20	19 un	der fi	eld co	ndition	S.	

		Date	Food		Soil		
Year	Season	of	consumption	%	translocation	%	
		inspection	(g./trap/m²)		(g./trap/m²)		
		15 Dec.	19.45	1.65	35.06	1.75	
		31 Dec.	14.65	1.24	16.79	0.84	
		15 Jan.	4.50	0.38	11.12	0.55	
	Winter	31 Jan.	3.84	0.33	8.28	0.41	
	winter	15 Feb.	10.58	0.90	19.01	0.95	
		28 Feb.	26.36	2.24	57.69	2.87	
		Total	79.37	675	147.95	7 26	
		Mean	13.23	0.75	24.66	7.50	
		15 Mar.	33.56	2.85	85.08	4.24	
		31 Mar.	56.16	4.77	151.07	7.52	
		15 Apr.	77.88	6.62	181.30	9.03	
	Spring	30 Apr.	96.18	8.17	182.80	9.10	
		15 May	110.47	9.39	220.17	10.96	
		31 May	82.58	7.02	108.71	5.41	
		Total	456.83	20.02	929.13	46.05	
019		Mean	76.14	30.02	154.86	40.23	
8-2		15 June	74.88	6.36	102.63	5.11	
201		30 June	56.33	4.79	71.19	3.54	
		15 July	47.55	4.04	59.71	2.97	
	Cummon	31 July	37.52	3.19	38.20	1.90	
	Summer	15 Aug.	30.48	2.59	34.79	1.73	
		31 Aug.	41.80	3.55	45.41	2.26	
		Total	288.56	24.52	351.93	17.50	
		Mean	48.09	24.32	58.66	17.52	
		15 Sept.	57.92	4.92	105.14	5.23	
		30 Sept.	58.95	5.01	109.57	5.45	
		15 Oct.	78.33	6.66	121.06	6.03	
	A	31 Oct.	89.08	7.57	144.40	7.19	
	Autumn	15 Nov.	45.07	3.83	71.28	3.55	
		30 Nov.	22.65	1.92	28.38	1.41	
		Total	352.00	20.01	579.83	20.06	
		Mean	58.67	29.91	96.64	∠ð.ð0	
	Grand total		1176.76	100.00	2008.85	100.00	

The total amount of soil translocation by *P*. *hybostoma* throughout one year recorded of about 2009 g./trap/m². In this respect Abd El-Latif, 2013 estimated the total amount of soil translocation were 464.2-1714.9 g./m² by the same species using plastic trap containing 8 rolls. Both food consumption and soil translation rates are the most precise and more quantitatively accurate parameters for the assessment of termite foraging activity. (El-Sherif, *et al.* 2009).

Percentage of infested traps:

The percentage of infested traps is the simplest and easiest parameter, which estimates foraging activity and shows termite damage.

As shown in Table (2), the percentage of infested traps was low throughout winter (17-40 %), while it increased progressively during spring to record the 1^{st} peak (83%) in the 2^{nd} half of April. The percentage decreases gradually during summer (31-71%), after which it trended to increase gradually until it reached the 2^{nd} peak of about 89% in the 2^{nd} half of October.

Table	2. Half-monthly and seasonal numbers of
	captured termite castes of P. hybostoma at El-
	Fayoum governorate for one year extended
	from October 2018 to September 2019.

		Date	No. of ca	ermite ps	% Of infested	
Year	Season	of inspection	Workers	Workers	Workers	traps with termites
		15 Dec.	2953	73	0	37.1
		31 Dec.	2475	82	0	34.28
		15 Jan.	3261	43	0	17.14
	N <i>T</i>	31 Jan.	2412	36	0	25.7
	Winter	15 Feb.	9399	90	0	37.1
		28 Feb.	18416	154	7	40
		Total	38916	478	7	21.00
		Mean	6486	79.67	1.17	31.89
		15 Mar.	51658	136	2	40
		31 Mar.	17290	135	0	48.57
	Spring	15 Apr.	14843	180	0	62.86
		30 Apr.	42607	795	8	82.86
		15 May	29165	890	1	80
		31 May	11846	319	15	68.57
		Total	167409	2455	26	(2.01
019		Mean	27901.5	409.17	4.33	63.81
8-2(15 June	50559	616	768	71.43
201		30 June	31396	509	148	57.14
		15 July	10023	179	0	40
	C	31 July	30946	474	280	31.43
	Summer	15 Aug.	34910	791	80	34.28
		31 Aug.	38334	570	140	40
		Total	196168	3139	1416	45 71
		Mean	32694.67	523.17	236	43.71
		15 Sept.	55544	1314	1	62.86
		30 Sept.	35704	1262	20	62.86
		15 Oct.	119823	708	2	82.86
	Autumn	31 Oct.	78426	837	0	88.57
	Autumn	15 Nov.	25418	308	0	54.28
		30 Nov.	22410	159	0	48.57
		Total	337325	4588	23	66.67
		Mean	56220.83	764.67	3.83	00.07
	Gra	nd total	739818	10660	1472	

Number of captured workers:

Data in Table (2), showed that numbers of captured workers/35 traps have five peaks recorded in the 1st half of March (51658/35 traps), in the 2nd half of April (42607/35 traps), in the 2nd half of June (50559/35 traps), in the 1st half of September (55544/35 traps) and the highest peak occurs in the first half of October (119823/35 traps). Number of captured workers was relatively low during winter (38916/35 traps), more or less moderated during both spring (167409/35 traps) and summer (196168/35 traps), while, the highest number occurred during autumn (337325/35 traps). Rizk et al., (1985) stated that the workers of P. hybostoma have two peaks in February /March and August/September. Abd El-Latif, 2013 found that captured workers recorded three peaks per year and the maximum number of P. hybostoma workers occurred during summer.

In this respect El-Bassyoni, 2001 reported that, the Maximum Number of *P. hybostoma* workers occurred during winter, while, the lowest number was found during summer. Abd El-Latif, 2003 indicated that a considerable portion of the total annual number of captured *P. hybostoma* workers took place during the winter season

This parameter is often positively proportional to foraging activity as long as there are remnants of the cardboard rolls in the traps. The result of this parameter is inaccurate when there is no food material, foraging workers move to another trap filling up with cardboard rolls, therefor, the trap used in this investigation containing 8 rolls in order to it is quite suitable for the nutrition requirements of termites during tested period which it was two weeks. **Casta commediate**

Caste composition:

Data in Table (3) indicated that the vast majority of the trapped individuals were workers, where the total number of P. hybostoma individuals collected from 840 traps throughout the whole period of the current investigation was 751950 individuals of these 739818 (98.39%) were workers, 10660 (1.42 %) were soldiers and 1472 (0.20 %) were alates.

Table 3. Composition of *P. hybostoma* caste captured in the plastic traps at El-Fayoum Governorate during 2018/2019 year.

	uuring 2010/2017 year.	
Caste	No. of captured termite	%
Workers	739818	98.39
Soldiers	10660	1.42
Alates	1472	0.20
Total	751950	

Statistical analysis:

As shown in Table (4), statistically all climatic factors showed highly significant and positive effect on the mean values of food consumption, except RH% which has a significantly negative effect. Concerning soil translocation all-experimental parameter. climatic factors have insignificantly positive effect on the mean values of soil translocation, except that of RH% which was significantly negative. The correlation coefficient between population of termites and all tested climatic factors was insignificantly positive, except that with min. air temperature which was significantly positive and RH% which was insignificantly negative. Also, number of infested traps significantly positive correlated with maximum air temperature and Mean air temperature, while the correlation was insignificantly negative with RH%.

Parameters of		arity pur		21119000	Clim	atic factor	's		10/201> Jean	•
Foraging	Max. air temp.		Mean aiı	· temp.	Min. ai	r temp.	Soil te	mp.	RH	%
Activity	r	b	r	b	r	b	r	b	r	b
Food consumption	.571**	2.253	0.541**	2.208	0.502*	2.316	0.544**	1.957	-0.589**	-1.638
Soil translocation	0.306	2.397	0.27	2.189	0.222	2.031	0.281	2.004	-0.445*	-2.456
No. of termites	0.381	39.023	0.393	41.66	0.420*	50.3	0.393	36.71	-0.102	-7.366
No. of infested traps	0.427*	1.11	0.405*	1.089	0.392	1.189	0.4	0.949	-0.347	-0.635

 Table 4. Simple correlation (r) and simple regression (b) coefficients for the relationship between some weather factors and the foraging activity parameters of *P. hybostoma* at Fayoum governorate during 2018/2019 year.

** High significance, p ≤ 0.01. * Significance, p ≤ .05.

2- Subsurface foraging activity parameters: Food consumption:

Data in Table (5) indicated that in winter, food consumption was relatively low (437.04 g./5 column traps) at the first level (surface activity), and increased gradually until reached its maximum of about (2697.7 g./5 column traps) at the 5th level. In spring, food consumption was relatively high (1063.74 g./5 column traps) at the 1st level, then it jumped to record its maximum (2512.18 g./5 column traps) at the 2nd level, after that it decreased gradually until reached 953.69 g./5 column traps at the 4th level, then it increased slightly to 1101.92 g./5 column

traps at the 5th level. In summer, was very low (155.39 g./5 column traps) at the 1st level compared to other seasons, then it increased progressively from about 2104.1 g./5 column traps at the 2nd level to about 2272.1 g./5 column traps at the 3rd level after which it tended to decline gradually from 1811.46 g./5 column traps at the 4th level to 713.6 g/trap at the 5th level. In autumn, food consumption was very high of about 1265.26 g./5 column traps at the 1st level then tended to increase gradually until it reached its maximum (3246.17 g./5 column traps) at the 4th level. This high was followed by a slight decrease 2870 g./5 column traps at the 5th level.

 Table 5. Half-monthly and seasonal means of food consumption of *P. hybostoma* at different vertical distances of soil surface at El Fayoum governorate, Egypt in 2018/2019 season under field conditions.

		Date of		Food	consumption	ng./5 colum	n traps		_
Year	Season	inspection	Surface		Subs	urface activi	ty (SS)		Grand Total
		inspection	L1	L2	L3	L4	L5	SS Total	
		15 Dec.	2	25.64	120	600	600	1345.64	1347.64
		31 Dec.	115.1	162.8	339.36	455	489.4	1446.56	1561.66
		15 Jan.	25	158	236.9	476	600	1470.9	1495.9
	Winton	31 Jan.	79.24	99.5	201	391.5	595	1287	1366.24
	whiter	15 Feb.	75.7	269	300	300	72.3	941.3	1017
		28 Feb.	140	162	300	300	341	1103	1243
		Total	437.04	876.94	1497.26	2522.5	2697.7	7594.4	8031.44
		Mean	72.84	146.16	249.54	420.42	449.62	1265.73	1338.57
		15 Mar.	180.74	162	130.53	224.3	289.62	806.45	987.19
		31 Mar.	227.9	431.88	309.1	179.94	312	1232.92	1460.82
		15 Apr.	224.3	483.3	292.3	232.3	242	1249.9	1474.2
	Comina	30 Apr.	318.7	450.5	137.8	291.15	176	1055.45	1374.15
	spring	15 May	64.3	385.5	186.6	0	82.3	654.4	718.7
		31 May	47.8	599	490.8	26	0	1115.8	1163.6
~		Total	1063.74	2512.18	1547.13	953.69	1101.92	6114.92	7178.66
019		Mean	177.29	418.70	257.86	158.95	183.65	1019.15	1196.44
8-2		15 June	39	352.2	286.4	107	0	745.6	784.6
01		30 June	77.2	438	300	86.2	0	824.2	901.4
(1		15 July	39.1	302	356	289.5	43.6	991.1	1030.2
	Cummon	31 July	0	395	448	420	180	1443	1443
	Summer	15 Aug.	0	269.1	436.7	504.1	303	1512.9	1512.9
		31 Aug.	0	347.8	445	404.66	187	1384.46	1384.46
		Total	155.3	2104.1	2272.1	1811.46	713.6	6901.26	7056.56
		Mean	25.88	350.68	378.68	301.91	118.93	1150.21	1176.09
		15 Sept.	32.3	228	641	503.5	260	1632.5	1664.8
		30 Sept.	75.2	68.8	300	261	190	819.8	895
		15 Oct.	426.44	272.91	569.82	502.18	558.58	1903.49	2329.93
	Autum	31 Oct.	428.8	322.3	460	555.2	460	1797.5	2226.3
	Autumn	15 Nov.	238.29	421.73	623.5	676.29	735.82	2457.34	2695.63
		30 Nov.	64.23	386.48	430.8	748	665.6	2230.88	2295.11
		Total	1265.26	1700.22	3025.12	3246.17	2870	10841.51	12106.77
		Mean	210.88	283.37	504.19	541.03	478.33	1806.92	2017.80
	Grand total		2921.34	7193.44	8341.61	8533.82	7383.22	31452.09	34373.43

Concerning the seasonal activity, it was found that the maximum seasonal means of surface food consumption (0-30 cm vertical distance) took place during autumn (210.88 g./5 column traps), followed with spring (177.29 g./5 column traps), while the minimum seasonal means occurred during summer (25.88 g./5 column traps). The

maximum seasonal means of subsurface food consumption recorded 1806.92 g./5 column traps during autumn throughout four levels, (from the 2^{nd} to the 5^{th} level), while the minimum seasonal means occurred during spring (1019.15 g./5 column traps). The seasonal means in winter and summer were more or less moderate (1265.73 and 1150.21 g./5 column traps, respectively).

Generally speaking, total seasonal means of surface and subsurface foraging activity, as represented by food consumption was relatively low during summer (1176.09 g./5 column traps) and spring (1196.44 g./5 column traps) and high during autumn (2017.79 g./5 column traps), while it was moderate during winter (1338.57 g./5 column traps). Results are in partial agreement with Abd El-Latif and Solaiman (2014) who stated that the highest rate of food consumption took place during autumn months and the lowest occurred during spring season.

From the surface foraging activity results it is observed that the activity of termite increased during autumn and spring months, while it decreased during winter and summer months. This reduction may be attributed to low temperature during winter and high temperature during summer, whereas termite avoided high temperature of soil surface in summer and moved to deeper levels (2nd,3rd and 4th). In winter also termite avoided low temperature of soil surface and moved to depth 230 cm vertical distance to record the highest activity in the 5th level. It could be concluded that both high and low temperatures resulted in surface forging activity reduction. The total annual food consumption increased gradually from the first level (2921.34 g./5 column traps) until the fourth one (8533.82 g./5 column traps), then it decreased slightly to (7383.22 g./5 column traps) at the 5th level. These results are in agreement with Abd El-Latif and Solaiman (2014) who stated that food consumption of *p. hybostoma* was relatively low at the 1st level, increased gradually to reach its maximum at the 6th level at 180 cm depth from the soil surface.

Soil translocation (construction activity):

Table (6) shows that the variation of food consumption is correlated with that of soil translocation whereas the relationship was positive and highly significant between food consumption and soil translocation (r =0.992**). In winter, soil translocation was relatively low at the 1st level (679.83 g./5 column traps) and increased gradually until reached its maximum at the 5th level (4919.72 g./5 column traps). In spring, soil translocation was relatively high in the 1st level (1612.62 g./5 column traps), while it sharply increased to record 3915.7 g./5 column traps at the 2nd level followed by decline at the levels 3th and 4th level (2114.47, 810.46). In summer, soil translocation was very low at the 1st level (210.05 g./5 column traps), while it reached to the highest quantity 4338.9 g./5 column traps at the 3rd level. In autumn, the 1st level recorded the highest rate of soil translocation with 2977.38 g./5 column traps compared with the other seasons, while in the same season, it increased to reach its maximum at the 5th level (9434.09 g./5 column traps).

Table 6. Half-monthly and seasonal means of soil translocation rates of *P. hybostoma* at different vertical depth of soil surface at El Favoum governorate in 2018/2019.

		Date	0	Soil	translocation	g./5 column	traps		
Year	Season	of	Surface		Subs	urface activity	7 (SS)		Total
		inspection	L1	L2	L3	L4	L5	Ss total	
		15 Dec.	10	43.5	318.3	1055.5	1577.32	2994.62	3004.62
		31 Dec.	183.18	371	583.26	849.66	688.3	2492.22	2675.4
		15 Jan.	31	327	479	758.4	1142	2706.4	2737.4
	Winter	31 Jan.	114	103.8	421	642.5	970	2137.3	2251.3
	winter	15 Feb.	92.65	257	385	363	91.5	1096.5	1189.15
		28 Feb.	249	210.95	251	462.38	450.6	1374.93	1623.93
		Total	679.83	1313.25	2437.56	4131.44	4919.72	12801.97	13481.8
		Mean	113.31	218.88	406.26	688.57	819.95	2133.66	2246.97
		15 Mar.	297.83	210.95	158.17	166.94	367.56	903.62	1201.45
	Spring	31 Mar.	409.12	648.25	323.9	125.11	368.38	1465.64	1874.76
		15 Apr.	361.84	620.06	383.6	179	412.92	1595.58	1957.42
		30 Apr.	384.76	520.42	142.6	319.11	209.97	1192.1	1576.86
		15 May	67.5	700.22	267.7	0	107	1074.92	1142.42
		31 May	91.6	1215.8	838.5	20.3	0	2074.6	2166.2
6		Total	1612.65	3915.7	2114.47	810.46	1465.83	8306.46	9919.11
01		Mean	268.78	652.62	352.41	135.08	244.31	1384.41	1653.19
8-2		15 June	35.9	441.97	447.76	169.9	0	1059.63	1095.53
018		30 June	119.8	861.1	620.5	110	0	1591.6	1711.4
0		15 July	54.35	596.9	685.34	454.68	63.34	1800.26	1854.61
	Summor	31 July	0	745	962.2	714.2	532	2953.4	2953.4
	Summer	15 Aug.	0	388	833	814.59	688.7	2724.29	2724.29
		31 Aug.	0	582.14	790.09	732.67	377.4	2482.3	2482.3
		Total	210.05	3615.11	4338.89	2996.04	1661.44	12611.48	12821.53
		Mean	35.01	602.52	723.15	499.34	276.91	2101.91	2136.92
		15 Sept.	55	364.46	1311.61	859.58	534.46	3070.11	3125.11
		30 Sept.	247.28	61.96	511.2	499.2	345.2	1417.56	1664.84
		15 Oct.	986.58	649.97	1382.63	1459.15	1843.49	5335.24	6321.82
	Autumn	31 Oct.	1038.48	986.36	985.95	1418.85	1618.37	5009.53	6048.01
	Autumn	15 Nov.	526.8	1348.6	2073.02	1802.48	2630.36	7854.46	8381.26
		30 Nov.	123.24	1031.08	1100.24	1766.11	2462.19	6359.62	6482.86
		Total	2977.38	4442.43	7364.65	7805.37	9434.07	29046.52	32023.9
		Mean	496.23	740.41	1227.44	1300.90	1572.35	4841.09	5337.32
	Gra	nd total	5479.91	13286.49	16255.57	15743.31	17481.06	62766.43	68246.34

Data in Table (6) indicated that, the maximum seasonal means of surface soil translocation took place during autumn (496.23 g./5 column traps) and the minimum seasonal means of soil translocation occurred during summer (35.01 g./5 column traps). Regarding the subsurface soil translocation, it was found that the maximum seasonal means occurred during autumn (4841.09 g./5 column traps) and the minimum seasonal means of soil translocation took place during spring (1384.41 g./5 column traps).

Also, the total seasonal means of subsurface foraging activity, as represented by soil translocation recorded the maximum rates during autumn (4841 g./5 column traps) and the minimum rates during spring (1384.41 g./5 column traps), while they were moderate during both winter and summer. Abd El-Latif and Soliman (2014) stated that the highest construction activity was in autumn and the lowest occurred in spring.

Total annual foraging activity (soil translocation) increased gradually from the 1st level (5479.91 g./5 column traps) until the 3rd level (16255.57 g./5 column traps) then, it slight decreased at the 4th level (15743.31 g./5 column traps) while, the 5th level recorded a maximum quantity of soil translocation (17481.06 g./5 column traps).These result are in agreement with those of Abd El-Latif and Soliman

(2014) who reported that the least rate of construction occurred at the 1^{st} level (390.12 g/trap) and the largest was at the 6^{th} level (2427.08 g/trap).

Number of captured workers:

Data in Table (7) showed that in winter, number of captured workers was low at the 1st level (7006 workers/5 column traps), while the maximum number was 46027 workers/5 column traps at the 3rd level. In spring, the maximum number of captured workers was 70289 workers/5 column traps at the 4th level, while it dropped to 40953 workers/5 column traps at the 5th level. In summer, the number of captured workers increased gradually from the lowest rate at the 1st level (11218 workers/5 column traps) to record the maximum number at the 2nd level (36007 workers/5 column traps). In autumn, number of captured workers increased from 34408 workers/5 column traps at the 1st level to reach the maximum population at the 2nd level with 40484 workers/5 column traps, while the lowest number was recorded at the 4th level (18180 workers/5 column traps).

Seasonal means of surface foraging activity (number of captured workers) was low in winter (1167.67 workers/5 column traps) and summer (1869.67 workers/5 column traps) while it was higher in spring and autumn (7586 and 5734.67 workers/5 column traps, respectively).

 Table 7. Half-monthly and seasonal numbers of captured workers of P. hybostoma at different vertical distance of soil surface at El Fayoum governorate in 2018/2019 under field conditions.

		Date	Nu	nber of capt	ured worker	rs/5 column tr	aps	CC	
Year	Season	of	Surface		Subsurface	e activity (ss)		55 Total	Total
		inspection	L1	L2	L3	L4	L5	Total	
		15 Dec.	180	19254	7780	20	40	27094	27274
		31 Dec.	70	2302	6812	5380	14227	28721	28791
		15 Jan.	2500	1910	20856	13520	1252	37538	40038
	Winten	31 Jan.	3049	350	10547	19380	3409	33686	36735
	winter	15 Feb.	323	2692	12	0	2715	5419	5742
	_	28 Feb.	884	3796	20	0	6277	10093	10977
		Total	7006	30304	46027	38300	27920	142551	149557
		Mean	1167.67	5050.67	7671.17	6383.33	4653.33	23758.50	24926.17
		15 Mar.	26500	16658	11536	14937	15608	58739	85239
		31 Mar.	8369	16764	18361	41452	12839	89416	97785
		15 Apr.	1027	2923	11647	6774	3973	25317	26344
	Carriera	30 Apr.	8820	6521	8293	7076	4967	26857	35677
	Spring	15 May	800	7037	500	0	3566	11103	11903
	_	31 May	0	960	4102	50	0	5112	5112
~	-	Total	45516	50863	54439	70289	40953	216544	262060
015		Mean	7586.00	8477.17	9073.17	11714.83	6825.50	36090.67	43676.67
8-2		15 June	1053	5740	8423	1333	0	15496	16549
01		30 June	5346	3529	740	4576	0	8845	14191
(1		15 July	4819	2170	9952	340	3598	16060	20879
	Cummon	31 July	0	4670	362	3284	6710	15026	15026
	Summer	15 Aug.	0	10940	6054	2721	75	19790	19790
	_	31 Aug.	0	8958	1560	5613	872	17003	17003
		Total	11218	36007	27091	17867	11255	92220	103438
		Mean	1869.67	6001.17	4515.17	2977.83	1875.83	15370.00	17239.67
		15 Sept.	17880	17907	6543	8430	5572	38452	56332
		30 Sept.	9350	5883	240	750	5910	12783	22133
		15 Oct.	2294	3459	7570	1664	3127	15820	18114
	Autumon	31 Oct.	1591	5011	3128	5074	1390	14603	16194
	Autumn	15 Nov.	193	422	9530	2162	4044	16158	16351
		30 Nov.	3100	7802	9610	100	7703	25215	28315
	-	Total	34408	40484	36621	18180	27746	123031	157439
		Mean	5734.67	6747.33	6103.50	3030.00	4624.33	20505.17	26239.83
	Grai	nd total	98148	157658	164178	144636	107874	574346	672494.00

Seasonal means of subsurface foraging activity (number of captured workers) was relatively low in summer (15370 workers/5 column traps), more or less moderate during both winter and autumn (23758.5 and 20505.17 workers/5 column traps respectively), while it was relatively high during spring (36090.67 workers/5 column traps).

Seasonal means of surface and subsurface foraging activity (number of captured workers) in Table (7) results indicated that the lowest numbers of captured workers were during summer (17239.67 workers/5 column traps), while the highest numbers were during spring (43676.6 workers/5 column traps). Seasonal means of captured workers were more or less moderate during both autumn (26239.83 workers/5 column traps) and winter (24926.166 workers/5 column traps).

In this respect Abd El-Latif and Solaiman (2014) reported that the highest numbers of captured workers were in summer and autumn. While, the lowest was in winter.

Concerning the level effect, the total annual number of captured workers increased gradually from the 1st level (98148 workers/5 column traps) until it reached to the peak at the 3rd level (164178 workers/5 column traps), then it decreased gradually from the 4th level (144636 workers/5 column traps) to the 5th level (107874 workers/5 column traps). Abd El-Latif and Solaiman (2014) reported that the least population was captured at the 1st level, while the highest was found at the 5th level.

Number of captured soldiers:

Number of captured soldiers shown in Table (8). In winter, the number of captured soldiers was low at the 1st level (133 individuals/5 column traps), then it increased to 143 soldiers at the 2nd level, after that it decreased gradually to reach its minimum (70 individuals/5 column traps) at the 5th level. In spring, number of captured soldiers was relatively high at the 1st level (413 individuals/5 column traps) compared to the previous season, then it decreased gradually until it reached 129 individuals/5 column traps at the 5th level. In summer, the number of captured soldiers was low (135 individuals/5 column traps) at the 1st level, and raised to 687 soldiers/5 column traps at the 2nd level, after that it decreased gradually until the 5th level (182 individuals/5 column traps). In autumn, the maximum catch of soldiers occurred at the 1st level (679 individuals/5 column traps), then it decreased gradually to record 263 individuals/5 column traps at the 3rd level, after that it increased again gradually to reach 523 individuals /trap at the 5th level.

Surface seasonal means of captured soldiers were relatively low during winter and summer seasons (22.17-22.5 individuals/5 column traps), moderate during spring (68.38 individual/5 column traps), while it was higher during autumn (113.17 individual/5 column traps). Concerning subsurface seasonal means of captured soldiers, the adverse occurred where it was relatively high during summer and autumn (269 and 264.67 individuals/5 column traps, respectively) and it was moderate during spring (185.33 individuals/5 column traps), while it was lower during winter 72.67 individuals/5 column traps.

Surface and subsurface mean of captured soldiers recorded the highest rate during autumn (378 individuals/5

column traps) and lowest rate during winter (95 individuals/5 column traps).

On the other hand, total annual number of captured soldiers reached the highest rate at the 2nd levels (1625 individuals/5 column traps) while, it decreased to record the lowest (904 individuals/5 column traps) at the 5th level. Abd El-Latif and Solaiman (2014) reported that number of the soldiers was 13.4 individuals/trap in winter and 23.8 individuals/trap in summer.

Table 8. Half-monthly seasonal numbe	rs of captured
soldiers of P. hybostoma at di	fferent vertical
depth of soil surface at El Fayou	ım governorate
in 2018/2019.	0

			No. of captured soldiers/5								
5		Date		colun	ın tra	ps		Se			
Yea	Season	of	Surface	5	Subsu	rface		total	Total		
		inspection	Sullac	1	activity (ss)			wa			
			L1	L2	L3	L4	L5				
		15 Dec.	18	53	30	2	9	94	112		
		31 Dec.	8	10	53	26	11	100	108		
		15 Jan.	39	32	28	19	12	91	130		
	Winter	31 Jan.	19	7	15	46	7	75	94		
	winter	15 Feb.	21	16	2	0	10	28	49		
		28 Feb.	28	25	2	0	21	48	76		
	-	Total	133	143	130	93	70	436	569		
		Mean	22.17	23.83	21.67	1550	11.67	72.67	94.83		
		15 Mar.	58	34	26	44	19	123	181		
	Spring	31 Mar.	59	73	53	71	27	224	283		
		15 Apr.	27	20	63	39	34	156	183		
		30 Apr.	248	23	53	132	18	226	474		
	spring	15 May	21	153	31	0	31	215	236		
		31 May	0	33	131	4	0	168	168		
_		Total	413	336	357	290	129	1112	1525		
015		Mean	68.83	56.00	5950	48.33	2150	18533	254.17		
22		15 June	17	42	24	13	0	79	96		
201		30 June	75	82	25	87	0	194	269		
		15 July	43	28	95	17	27	167	210		
	Summor	31 July	0	93	18	62	87	260	260		
	Summe	15 Aug.	0	221	126	81	20	448	448		
		31 Aug.	0	221	63	134	48	466	466		
		Total	135	687	351	394	182	1614	1749		
		Mean	22.50	11450	5850	65.67	30.33	269.00	291.50		
		15 Sept.	270	141	103	243	227	714	984		
		30 Sept.	339	112	20	29	140	301	640		
		15 Oct.	2	60	18	8	26	112	114		
	Autumn	31 Oct.	24	49	15	25	14	103	127		
	Autumn	15 Nov.	17	7	40	36	23	106	123		
		30 Nov.	27	90	67	2	93	252	279		
		Total	679	459	263	343	523	1588	2267		
		Mean	113.17	76.50	43.83	57.17	87.17	264.67	377.83		
	Gran	d total	1360	1625	1101	1120	904	4750	6110.00		

REFERENCES

- Abd El-Latif, N. A. (2003): Ecological and control studies on certain subterranean termite species. Ph. D. Thesis, Fac. Agric. Cairo Univ. 260 p.
- Abd El-Latif, N. A. (2013): Foraging activity parameters of the sand subterranean termite, *Psammotermes hybostoma* Desneux (Isoptera: Rhinotermitidae) and its associated fungus *Metarhizium anisopliae* under the field conditions at El-Fayoum governorate, Egypt. Egyptian journal of plant protection. 8 (2): 8-20.

- Abd El-Latif, N. A. and Solaiman, R. H. A. (2014): Foraging activity of the subterranean sand termite, *Psammotermes hybostoma* Desneux and its associated fungus *Metarhizium anisopliae* under natural environmental conditions in El-Fayoum governorate, Egypt. Egyptian journal of biological pest control. 24 (2): 285-294.
- Abdel-Wahab, M. A.; Rizk, M. R.; Hussein, M. H.; Abd El-Raof, T. K. and El-Taib, M. S. (1983): Surface activity of sand termite *Psammotermes hybostoma* (Desneux) in Asswan, Assuit J. Agric. Sci., 14 (3): 99-108.
- Ahmed, H. M. (1997): Ecological studies and control of harvester subterranean termite *Anacanthotermes ochraceus* (Burm.) at El Fayoum governorate. M.Sc. Thesis, Fac. Agric., Cairo Univ. at El Fayoum branch 77 p.
- Ali, A. M. (1980): Control of termites in Egypt-present and future. Sociobiology, 5 (2): 211-212.
- Ali, A. M.; Abou-Ghadir, M. F. and Abdel Hafez, N. A. (1982): Surface activity of termite in the New Valley. Assuit J. Agric. Sci., 13 (3): 73-78.
- Brian, M. V. (1978): Production ecology of ants and termites. Cambridge Univ. Press. London. 409 p.
- Collins, M. S. and Nutting, W. L. (1973): Hightemperature tolerance in two species of subterranean termites from the Sonoran Desert in Arizona. Environ. Entomol., 2 (6): 1122-1123.
- El-Bassyoni, A. R. (2001): A study on the ecology and biological control of subterranean termites M. Sc. Thesis, Fac. Agric. Al-Azhar Univ. 145 p.
- El-Sebay, Y. (1991): A modified El-Sebay trap for subterranean termites. Fourth Arab. Congress of Plant Protection. Cairo, Egypt, Dec. 1991 pp. 245-247.
- El-Sebay, Y. (1993): Ecological studies on the harvester termite Anacanthotermes ochraceus (Burm.) in Egypt. Assuit J. Agric. Sci., 24 (4): 35-47.

- El-Sherif, S.I.; El-Sebay, Y.M.; and Abd El-Latif, N.A. (2009): Foraging activity of the subterranean termite (*Anacanthotermes ochraceus* (Burmeister) at El-Fayoum governorate, Egypt. Fayoum J. Agric. Res.7 Dev., 23(2):55-64.
- Emerson, A. E. (1955): Geographical origins and dispersions of the termite genera. Fieldiana Zool., 37: 465-521.
- Hafez, M. (1980): Highlights of the termite problem in Egypt. Sociobiology, 5 (2): 147-154.
- Harris, W. V. (1961): Termites their recognition and control. Longmans, London, 187 p.
- Harris, W. V. (1967): Termites of the genus Anacanthotermes in North Africa and the Near-East (Isoptera: Hodotermitidae) Proc. Roy. Ent. Soc. London, (B) 36: 79-86.
- Kaschef, A. H. and El-Sherif, L. S. (1971): Distribution of four termite species in the A. R. Egypt. Insectes Sociaux, 18 (4): 227-232.
- La Fage, J. P.; Nutting W. L. and Haverty, M. I. (1973): Desert subterranean termite: A method for studying foraging behavior. Environ. Entomol., 2: 954-956.
- Rizk, M. M. and Salman, A. G. (1984): Colony structure of sand termite. *Psammotermes hybostoma* (Desneux). Assuit J. Agric. Sci., 15 (5): 211-217.
- Rizk, M. M.; El-Sayed, A. K.; Ali, A. M. and Eraky, S. A. (1985): Flight activity and annual caste fluctuation of sand termite *Psammotermes hybostoma* (Desneux) in Western Desert Egypt. Assuit J. Agric. Sci., 16 (2): 137-148.
- Salman, A. G. A; Morsy, M. A. and El. Sayed, A. A. (1987): Foraging activity of the sand termite, *Psammotermes hybostoma* (Desn.) in the New Valley, Egypt. Assuit J. Agric. Sci., 18(4): 51-57.
- Wood, T. G. (1978): Food and feeding habits of termites, pp. 55-80. In "production ecology of ants and termites" Brian, M. V. (ed.) Cambridge University Press, London.

نشاط السروح السطحى وتحت السطحى للنمل الأبيض تحت أرضى نمل الرمال Sammotermes hybostoma في محافظة الفيوم ، مصر (Isoptera: Renotermitidae في محافظة الفيوم ، مصر أحمد محمد عبدالقوى ، ربيع حسن عوض سليمان و نادية عبد الشفيع عبد اللطيف ا اقسم وقاية النبات - كلية الزراعة – جامعة الفيوم .

الملخص

تم تقدير نشاط السروح السطحي وتحت السطحي للنمل الأبيض تحت الأرضى. (Isoptera: Rhinotermitidae) معتقد بنشاط السروح السطحي وتحت السطحي للنمل الأبيض تحت الأرضى. (Soptera: Rhinotermitidae ممتيدة بلاستيكية منقبة مستطيلة الشكل ، بينما تم استخدام مصيدة بلاستيكية منقبة مستطيلة الشكل ، بينما تم استخدام مصيدة بلاستيكية منقبة مستطيلة الشكل ، بينما تم استخدام مصيدة بلاستيكية منقبة مستطيلة الشكل ، بينما تم استخدام مصيدة بلاستيكية منقبة مستطيلة الشكل ، بينما تم استخدام مصيدة العمود إلى خمسة مستويلت مع حواجز مناسبة من الفلين مصيدة عمود ذات تصميم جديد (ارتفاع ٢٠١٠ مم ، وقطر ٢٠٢ من مصيدة أسروح (الإستهلاك الغذائي) كان منخفضًا نسبيًا خلال فصل الشتاء (٢٠٢٣ جم/مصيدة/م^٢) ، بينما كان استغدام أسبيًا خلال فصل الشتاء (٢٠٢٣ جم/مصيدة/م^٢) ، بينما كان استهلاك الغذائي على نسبيًا خلال فصل الشتاء (٢٠٢٣ جم/مصيدة/م^٢) ، بينما كان استهلاك الغذائي العن الغذائي عمل المربيع (٢٠٢ جم/مصيدة/م^٢) ، بينما كان المنتهلاك الغذائي عنديبًا خلال فصل الشتاء (٢٠٢٣ جم/مصيدة/م^٢) ، بينما كان المتهلاك الغذائي عنديبيًا خلال فصل الربيع (٢٠١١ جم/مصيدة/م^٢) ، وكانت التغيرات في نقل التربية مماتلة تقريبًا للإستهلاك الغذائي. وسجلت أعلى المتوسطات الموسمية الموسمية الغذاء أحت السلحي (٢٠١٣ جم/مصيدة/م^٢) ، وينما كان الموسمية الغذاء أعلى المتوسطات الموسمية الموسمية الموسمية الغذائي الغذاء تحت السلحي (٢٠٦٩ جم/مصيدة/م^٢) ، وينما كان الموسمية معربية الغذاء تحت السلحي والمات الموسمية خلال المستويات الأربعة ، بينما سجلت أدنى المتوسلة الموسمية خلال فصل الربيع (٢٠١٣) معامة الموسمية الموسمية المرار مع مال الربيع (٢٠٩١٩ معالي الاستهلاك المنوي الغذاء تدريجيا من الربيع (٢٩١٣ معاملي الاستويكار عمر ٢٩/١٣ معالمات الموسمية في الرار مع مالي الربيع (٢٠١٣ ماليا السوي الموليات الأريني المولي المالي المالي المالي الموسمية المولي المولي المولي المولي المولي المولي المولي المولي المالي وكان المالي معاني مالي المولي المولي مالمالي الرابع مالي الرابع مالي المال الموليك الغذائي مالي المولي المالي المالي والمالي والمالي ولمالي ولمالي ولمالي ولمالي ولمولي مالي المولي المولي المولي المولي المولي المالي ولمالي ولابي مالي المولي مالي المولي ولمالي ولمالي ولمالي ولابي ولمالي ولابي مالي الرربي ولمول