Abstract

Abeer Mahmoud Mohammad ' Microbiological studies on *Bacillus thuringiensis* production ' Unpublished M.Sc. thesis, University of Ain Shams, Faculty of Agriculture, Department of Agric. Microbiology, 2003.

Eighty-three bacterial isolates were obtained from Egyptian soils, eight of them were belonging to *Bacillus thuringiensis*. Two of these strains were found to be highly effective against the 2^{nd} instar of the cotton leafworm, *Spodoptera littoralis*. These two strains were named as *B.t.*K-1 and *B.t.*K-3. The type of parasporal inclusion bodies, of the two isolates *B.t.*K-1 and *B.t.*K-3, was differentiated by electron microscope. It was found that *B.t.*K-1 produces bi-pyramidal inclusions, whereas *B.t.*K-3 produces cubical inclusions. CryI gene of these two strains, responsible for insecticidal protein, was identified by polymerase chain reaction (PCR) technique.

*B.t.*K-1 and *B.t.*K-3 were used to determine the best nutritional requirements and environmental conditions of sporulation in M.B.S medium. Maximum spore formation was attained, when glucose and yeast extract were used respectively as carbon and nitrogen sources, with a C/N ratio of 1/1, at pH 7.2, and 30°C incubation temperature. Harvested spore yield was used in different formulations (wettable powder, suspension preparation and granules), against the 2^{nd} instar larvae of the cotton leafworm. Granular formulation approved to be the best of these formulations in activity against the larvae and in keeping the viability of the *B.t.* spores till 12 months, post-preparation.

Key words: *Bacillus thuringiensis,* Isolation, Media requirements, Formulation.

Contents

.

1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1 History of <i>Bacillus thuringiensis</i>	3
2.2 Toxin of <i>Bacillus thuringiensis</i>	3
2 2 1 Protoxin	Δ
2.2.2 · endotoxin	-
2.3 Samples collection and identification of <i>Rt</i> isolates	5
2.4 Effect of media components and growth factors on sporulation	0
$\Delta f R$ thuringiansis	10
2.5 Improvement of <i>B</i> thuringiensis formulations	12
2.6 Toxicity of <i>B. thuringiensis</i> against the cotton leafworm.	
Spodoptera littoralis	17
3- MATERIAL AND METHODS	21
3.1 Soil samples for <i>B.t.</i> isolation	21
3.2 Identification tests	21
3.3 Media used	22
3.4 Maintenance of cultures	26
3.5 Standared inoculum	26
3.6 Toxicity test	27
3.6.1 Cotton leafworm maintenance	27
3.6.2 Efficacy of the isolated <i>B.t.</i> on the cotton leafworm	
S.littoralis (Bioassay)	27
3.6.3 Evaluation of lethal concentrations (LC) values	28
3.6.4 Mortality and LC-values calculations	28
3.7 Crystal morphology and electron microscopy	29
2.7.2 Terrerierierer	29
5.7.2 Transmission microscope	29
5.8 Identification of the specific insecticidal protein genes within the tested <i>D</i> to prepare using <i>PCD</i> method	20
3.9 Enzyme linked immunosorbort across (EUSA) for detection	29
of B = exotoxin	30

I

3.10 Optimization of media component for <i>B.t.</i> production	31
3.10.1 Simple functional correlation between <i>B.t.</i> spore count	
and optical density	31
3.10.2 Effect of nitrogen and carbon sources on spore counts	32
3.10.3 Effect of C/N ratio on spore counts	32
3.10.4 Effect of in-organic salts on spore counts	32
3.10.5 Effect of pH on spore counts	33
3.10.6 Effect of incubation temperature on spore counts	33
3.10.7 Counting of vegetative cells and spores of the isolated	
<i>B.t.</i> during incubation period	33
3.11 Process of recovery for spore-crystal complex of <i>B.t.</i> strains	34
3.12 Formulations and the efficacy of <i>B.thuringiensis</i> strains	34
3.12.1 Activity tests	35
3.13 Spore viability.	35
4- RESULTS AND DISCUSSION	37
4.1 Isolation and identification of <i>B.thuringiensis</i>	37
4.1.1 Morphological and growth characteristics	37
4.1.2 Microscopic observation	37
4.1.3 Biochemical properties	38
4.2 Efficacy of the isolated <i>B.thuringiensis</i> against the 2 nd instar	1
larvae of Spodoptera littoralis	40
4.3 Parasporal inclusion bodies	42
4.4 Polymerase Chain Reaction (PCR)	45
4.5 ELISA technique	45
4.6 Simple functional correlation between <i>B.t.</i> spore count and	
optical density	47
4.7 Effect of media type on sporulation	47
4.7.1 Optimization of media requirements.	50
a- Effect of carbon sources on sporulation of <i>B</i> t. strains	50
b- Effect of nitrogen sources on sporulation of <i>B.t.</i> strains	55

Π

.

•••

.

•

•

c- Effect of C/N ratio on sporulation of <i>B.t.</i> strains	56
d- Effect of in-organic salts on sporulation of <i>B.t.</i> strains	64
4.7.2 Effect of environmental conditions on sporulation of <i>B.t.</i>	
strains	67
a-Initial pH	67
b- Incubation temperature	68
4.7.3 Counting of spores and vegetative cells during incubation	
period	70
4.8 Efficacy of different formulations of <i>B.t.</i> spore-crystal complex	
against the 2 nd instar larvae of S. littoralis	77
4.8.1 Efficacy on clover leaves	77
4.8.2 Efficacy on castor bean leaves	79
4.9 Spore viability	85
5- SUMMARY.	89 ·
6- REFERENCES.	93
ARABIC SUMMARY.	

III

.

.