Abstract

This investigation was carried out during two successive seasons (2001/2002 and 2002/2003) on three citrus rootstocks, namely, sour orange (*C. Aurantium*), Volkamer lemon (*C. volkameriana*) and Cleopatra mandarin (*C. reshni Hort.exa. Tanaka*) to study the effect of two biofertilizers (*Azotobacter chroococcum* and *Azospirillum brasilense*) and two soil growing media (sand + peat moss and sand + compost) on the germinability of seeds of these rootstocks, as well as on the growth of transplants and budded seedlings.

- Germination percentage of seeds germinated on medium consisted of sand plus peat moss and inoculated by *Azotobacter* was better than those germinated in sand plus compost. Sour orange rootstock gave the highest percentage of seed germination.
- Post emergence damping off and albinosis percentages of seeds inoculated by a mixture of the two inocula and germinated on medium consisted of sand + compost were the best in this respect. Cleopatra mandarin was superior in case of wilting and albinosis percentage.
- Seedlings inoculated by *Azotobacter* and /or *Azospirillum* produced the highest values of growth parameters .
- Results revealed that leaf mineral contents (macro and micro elements) as well as total carbohydrates and total indoles of seedlings inoculated by *Azoto.chro*. and /or *Azospirillum* and grown on sand+ compost were higher than those of seedlings grown on sand + peat moss at budding and after budding with valencia orange scion.
- Vegetative growth parameters of valencia orange scion increased when rootstocks were grown on sand + compost inoculated by a mixture of *Azotobacter* and *Azospirillum*.
- It could be concluded that, inoculation by *Azotobacter* or *Azospirillum* in the presence of sand plus peat moss as growing medium is recommended for citrus seed germination. However, the use of compost and inoculation by a mixture of the two above mentioned bio-fertilizers is promising for obtaining healthy and cheaper budlings.

Key words: Bio-fertilization, Azotobacter, Azospirillum, citrus rootstocks, sour orange, volkamer lemon, Cleopatra mandarin, growing media, seed germination, growth parameters and leaf chemical composition.

Way .

CONTENTS

		page
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
3	MATERALS AND METHODS	23
4	RESULT AND DISCUSSION	29
4-1	FIRST PART.	29
	Effect of bio-fertilizers and growing media on	
	germinability of sour orange, volkamer lemon and	
	Cleopatra mandarin seeds.	
4-1-1	Germination percentage of seeds	29
4-1-2	Post emergence damping-off percentage of seedlings	31
4-1-3	Albinosis percentage	33
4-2	SECOND PART.	35
4-2-1	Effect of bio-fertilizers and growing media on	35
	growth parameters of sour orange, volkamer lemon	
	and Cleopatra mandarin seedlings.	
4-2-1-1	Stem length	35
4-2-1-2	Stem diameter	38
4-2-1-3	Number of leaves	41
4-2-1-4	Leaf area	43
4-2-1-5	Leaf fresh and dry weights	46
4-2-1-6	Stem fresh and dry weights	50
4-2-1-7	Root length	55
4-2-1-8	Root fresh and dry weights	57
4-2-2	Effect of bio-fertilizers and growing media on leaf	62
	mineral content of sour orange, volkamer lemon	
	and Cleopatra mandarin seedlings.	
4-2-2-1	Leaf nitrogen content	62
4-2-2-2	Leaf phosphorus content	64
4-2-2-3	Leaf potassium content	67
4-2-2-4	Leaf magnesium content	70
4-2-2-5		74
4-2-2-6	Leaf zinc content	77
4-2-2-7	Leaf manganese content	80
4-2-2-8	Leaf copper content	83
4-2-3	Effect of bio-fertilization and growing media on leaf	87
	total carbohydrates, indolic and phenolic contents	
	of sour orange, volkamer lemon and Cleopatra	
	mandarin seedlings.	
4-2-3-1	Leaf total carbohydrats content	87
4-2-3-2	Leaf indolic content	89

4-2-3-3	Leaf total phenolic content	92
4-3	THIRD PART	96
4-3-1	Effect of bio-fertilizers and growing media on some	96
	growth parameters of valencia orange scion budded	
	on three citrus rootstocks.	
4-3-1-1	Stem length and stem diameter	96
4-3-1-2	Number of leaves and leaf area	98
4-3-1-3	Leaf fresh and dry weights	100
4-3-1-4	Stem fresh and dry weights	102
4-3-2	Effect of bio-fertilization and growing media on leaf	105
	mineral contents of valencia orange after six months	
	from budding on some citrus rootstocks.	
4-3-2-1	Leaf nitrogen content	105
4-3-2-2	Leaf phosphorus content	107
4-3-2-3	Leaf potassium content	108
4-3-2-4	Leaf magnesium content	111
4-3-2-5	Leaf iron content	112
4-3-2-6	Leaf zinc content	114
4-3-2-7	Leaf manganese content	116
4-3-2-8	Leaf copper content	118
4-3-3	Effect of bio-fertilization and growing media on leaf	120
	total carbohydrates, indolic and phenolic contents	
	of valencia orange cv. scion budded on three citrus	
	rootstocks.	
4-3-3-1	Leaf total carbohydrats content	120
4-3-3-2	Leaf indolic content	122
4-3-3-3	Leaf total phenolic content	124
5	SUMMARY AND CONCLUSIONS	127
6	LITERATURE CITED	131
	ARRIC SUMMARY	