ABSTRACT

Hassan Mohamed Ebrahim Mohamed El-Saadany. Pesticidal and Immunological Studies of Some *Bacillus thuringiensis* Isolates. Unpublished Ph. D. Dissertation, Plant Protection Dept., Faculty of Agric., Ain Shams Univ., 2007

Bacillus thuringiensis subsps. kurstaki and entomocidus (Btk and Bte) were tested to estimate the toxicity against 1st, 2nd and 4th instars larvae of S. littoralis and the safety on mammals. Bioassay of Btk and Bte were studied at concentrations 10^8 , 10^7 , 10^6 , 10^5 and 10^4 spore/ml. Results revealed that the two tested strains had a great efficacy against larvae of S. littoralis, but Btk was more effective than Bte on the tested larvae. The LC_{50} values of *Btk* and *Bte* on the first instar larvae were 2.17 x 10⁵ and 7.83 x 10^6 spore/ml, respectively, while on the 2^{nd} instar were 4.69 x 10^6 and 3.179 x 10^9 spore/ml, respectively. The highest LC₅₀ values were recorded for the 4th instar larvae as 1.09×10^{11} and 2.77×10^{13} spore/ml for the same strains, respectively. Btk and Bte were injected into albino rabbits at 10^6 spore per rabbit to study immune response by using ELISA technique. The most antisera exhibited moderate titers of *Btk* and *Bte*. The inhibition activity were tested to determined antibody sensitivity. Btk antibody was higher sensitivity than *Bte* antibody in detection of antigen. Regarding the cross reactivity, using different antibodies raised against Btk and Bte. Bte spore gave cross reaction with antisera from Btk, likewise, Btk spores gave cross reaction with Bte antiserum. Subchronic toxicity tests were carried out on rats with Btk and Bte by oral administration in daily drinking water at 10^8 , 10^7 and 10^6 spore/ml for 90 days. All animals were observed frequently during the test period for mortality and clinical signs of disease or toxicity. No mortality, no difference in the behavior or the morphological examinations were found in the male and female rats treated with *Btk* and *Bte* at all concentrations. There were slight differences in body weight gained between treated and untreated male and female rats

at some period of the test. The weights of liver, kidney, spleen, heart, lung, brain and testis in treated male rats, were not affected at all tested rates of both strains of Bt, except a significant decrease in liver, kidney and heart weight at different concentrations of Bte. Data on treated female rats, indicated that the weights of liver, kidney, spleen, heart, lung and brain were not affected with Bt strains. On the other hand a significant increase was found in spleen weight at all rats of Bte. According to clincobiochemical aspects such as, liver functions (e.g., ALT, AST, ALP, TP and ALB), ChE, kidney functions (e.g., Urea and Creatinine) and thyroid function (e.g., T_4 and T_3), *Btk* and *Bte* produced a significant differences (increase or decrease) at some period of treatment and some concentrations of *Bt*. Specimens from liver, kidney and spleen of treated male and female rats treated were taken for examination by light microscopy and photographed. Btk and Bte showed mild effect and cellular immunity (activation of Kupffer cells) on liver. In addition, in the kidney, adverse effect (thickening of glomerular capillary basement membrane), albuminous material in Bowman's space and mild effect (atrophied glomerular capillary tubes) were recorded. Also, in the female rats treated with Btk, spleen tissue was less affected (the follicular blood vessels showed thickening of the wall). Lymphocytic depletion in the lymphoid follicles in the spleen of females was noticed with Bte. In addition, thickening of the blood vessel wall of follicular vessel and lymphocytic depletion in the lymphoid follicle were found in the spleen of male rats treated with *Bte*.

Key Words: *Bacillus thuringiensis, S. littoralis* toxicity, ELISA, pathogenicity, rats.

CONTENTS

TITLE	Page	
LIST OF TABLES	IV	
LIST OF FIGURES	VII	
I – INTRODUCTION	1	
II - REVIEW OF LITERATURE	4	
1-Toxicity of some <i>B. thuringiensis</i> isolates against some insects.	4	
2-Immunological studies	10	
2-1- Immune response of mammalia to <i>Bt</i>	10	
2.2-Enzyme-Linked Immunosorbent Assay (ELISA) for Bt	12	
3-Toxicity and Pathogenicty of <i>Bt</i> on mammalian	18	
3.1- Bacillus thuringeinsis receptors specificity	19	
3.2- Safety of <i>Bt</i> to mammals	20	
3.3- Effect of <i>Bt</i> and some chemicals on clinco–biochemical		
status	24	
3.4-Pathogenicity and infectivity of <i>Bt</i> to mammals	29	
III - MATERIALS AND METHODS	34	
1-Bacillus thuringiensis strains	34	
2- Culture conditions of <i>Bt</i>		
3- Bioassay experiments		
3.1- Rearing of the cotton leaf warm <i>S. littoralis</i>		
3.2- larval treatments	35	
4- Immunological studies	36	
4.1-Immunization of rabbits	36	
4.2-Enzyme- linked immunosorbentassay (ELISA) and		
competitive immunoassay	36	
5- Subchoronic toxicity (90- days) of <i>Bt</i> against rats	38	
5-1-Experimental Animals	38	
5-2-Animal treatments	38	
5-3-Observation of animals	39	
5-4-Evaluation of results	39	

5-5- Clinico-biochemical analyses
5-5-1-Collection of plasma samples
5.5.2. Determination of plasma aminotransferase (ALT & AST)
activity
5.5.3. Determination of plasma Alkaline Phosphatase (ALP)
activity
5.5.4. Determination of plasma Acetylcholinesterase (AChE)
activity
5.5.5. Determination of plasma Total Protein (T.P.)
concentration
5.5.6. Determination of plasma Albumin (Alb.) concentration
5.5.7. Determination of plasma Urea concentration
5.5.8. Determination of plasma Creatinine concentration
5.5.9. Determination of plasma total thyroxine (T4) and
triiodothyronine (T3)
5.6. Histopathological examinations
6-Statistical Analysis Procedures
IV - RESULTS AND DISCUSSION
1-Bioassay of B. thuringiensis subsp. kurstaki and B. thuringiensis
subsp. entomocidus on larvae of the cotton leafworm, S.
littoralis
2-Immunological effects of <i>Bt</i> strains on albino white rabbits
2.1-Titration
2.2-Competitive inhibition studies
3-Subchronic toxicity of Bt (Btk & Bte) against rats
3.1-Influence on mortality, behavior and morphological aspects
3.2- Influence of <i>Btk</i> and <i>Bte</i> on body weights gain
3.3- Influence of <i>Btk</i> and <i>Bte</i> on weights of the internal organs
3.4- Effect of Btk and Bte on some selected biochemical aspects in
male and female albino rats
3.4.1- Bt (Btk & Bte) and liver function in female and male albino
rats

ii

3.4.1.1- Effect on ALT and AST activities	67
3.4.1.2-Effect on ALP activities	75
3.4.1.3-Effect on total protein (TP) and albumin (ALB)	
concentration	79
3.4.2-Effect on ACh-E activity	86
3.4.3-Effect of Bt on some kidney function parameters in albino	90
rats	
3.4.3.1-Effect on urea level	90
3.4.3.2-Effect on creatinine level	91
3.4.4-Bt and thyroid function (thyroxine "T ₄ " and triiodo-	
thyronine "T ₃ ") in male albino rats	99
3.5-Histopathological changes on some internal organs of tested	
rats with different concentrations of <i>Btk</i> and <i>Bte</i>	102
3.5.1-Liver	102
3.5.2-Kidney	102
3.5.3-Spleen	103
V - SUMMARY AND CONCLUSION	117
VI – REFERENCES	128
VII- ARABIC SUMMARY	

LIST OF ABBREVIATION

Ab	Antibody
Abs	Antibodies
ALB	Albumin
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
Bt	Bacillus thuringiensis
Bte	Bacillus thuringiensis subsp. entomocidus
Bti	Bacillus thuringiensis subsp. israelensis
Btk	Bacillus thuringiensis subsp. kurstaki
CFU	Colony forming units
ChE	Cholinesterase
EPA	Environmental protection agency
H&E	Hematoxilen and eosin
Ι	Inhibition
Ма	Mitarizium anisoblie
MPCA	Microbial pest control agents
PBS	Phosphate buffer saline
PBSTA	Phosphate buffer saline tween azide
T_3	Triiodothyronine
T_4	Thyroxine
TNF-α	Tumor necrosis factor
ТР	Total protein