Name of Candidate: SOBHY AFIFI OHAMED AFIFI

Degree: Ph.D.

Title of Thesis: USE OF SOME AGRO-INDUSTRIAL BY-PRODUCTS

IN OSTRICH DIETS

Supervisors: Prof. Dr. ADEL SALAH EL-DEEN SHALABY

Professor of Animal Nutrition, Faculty of Agric, Cairo Univ.

Prof. Dr. OSMAN ABDEL-RAOUF SALEM

Professor of Animal Nutrition, Faculty of Agric, Cairo Univ.

Prof. Dr. AHMAD MAHMOUD ABBAS

Professor of Poultry Nutrition, Animal Production Research Institute

Department: Animal Production

Branch: Nutrition.

Approval:

ABSTRACT

This search aimed to study the effect of completely replacing soybean meal with either corn gluten meal or cotton seed meal and completely replacing clover hay with radicel in ostrich diets on their growth performance taking in consideration the economical aspects. Two parts were conducted in Europian village ostrich farm (special farm). In the 1st part, 15 ostrich birds aged 5 months were distributed equally into 5 groups, each contained three replicates. Five isocaloric (2450 Kcal DE/Kg) and isonitrogenous (19 % CP) experimental grower diets and other five finisher diets (2300 Kcal/Kg, 17 % CP) were formulated for feeding ostrich during growing (5-9 months) and up to 12 months of age, respectively. In the 2nd part, 5 digestion trials were carried out to determine to nutrients digestibility and feeding value of the finisher diets in addition to measuring some blood constituents. Results obtained showed that corn gluten, cotton seed meal and radicel could be used in feeding ostrich. However, the replacement level must be less than 100 %, where the control group surpassed other experimental groups with significant differences observed in some parameters, although no significant differences were detected in other parameters. Therefore, no significant differences were found among all dietary treatments in economical efficiency values. The results of digestibility and feeding value of experimental diets showed also no significant differences between treatments where corn gluten meal and cotton seed meal completely replaced soybean meal and also between treatments in which radicel completely replaced clover hay. Moreover, no significant differences were detected among treatments in plasma cholesterol, ALT , AST, calcium and phosphorous. All these findings confirmed the suitability of using the tested agro-industrial by-products in ostrich diets, however, the replacement level could be lowered than 100 % to obtain the best results from the nutritional and economical points of view.

CONTENTS

	rage
1. INTRODUCTION	1
2. REVIW OF LITRATURE	4
2.1. Definition of Ostrich	4
2.1.1. Origin and history	4
2.1.2. General description	6
2.1.3. Breeds and species	7
2.2. General information about ostriches	8
2.2.1. Morphological symptoms	8
2.2.2. Anatomy symptoms	9
2.2.2.1.The skin	9
2.2.2.Feathers.	9
2.2.2.3.Skeleton system	10
2.2.2.4.Arthrology	10
2.2.2.5.Mycology	10
2.2.2.6.Cardiovascular system	10
2.2.2.7.Lymphatic system	11
2.2.2.8.Respiratory system	11
2.2.2.9.Digestive system	12
2.2.2.10.Urogenital system	14
2.2.2.11.Nervous system	14
2.2.2.12.Endocrine system	15
2.2.2.13.Sensory system	. 16
2.2.3. Characteristics and behavior	16
2.2.3.1. Adaptation of the ostrich	16
2.2.3.2. Behavior of the ostrich	. 17
2.2.3.3. Sexual maturity	17

2.2.3.4. The breeding season	17
2.2.3.5. Ostrich products	17
2.3. Feeding ostrich	20
2.3.1.Digestion of ostrich	20
2.3.1.1. Digestion system in ostrich compared with other livestocks.	20
2.3.1.2. ostrich digestion and suitability to a pasture diet	24
2.3.2. Some ingredients used in feeding ostriches	26
2.3.2.1.Common feed ingredients	26
2.3.2.2.Alternative feed ingredients	28
2.3.2.3.Some agro-industrial by-products in feeding ostriches	30
2.3.2.3.1.Cotton seed meal (CSM)	30
2.3.2.3.2.Corn gluten meal (CGM)	31
2.3.2.3.3.Radicel (malt sprouts or Brewer's grains	33
2.3.3. Nutrient requirements for ostriches	35
2.3.3.1.Protein requirements for ostriches	35
2.3.3.2.Energy requirements for ostriches	35
2.3.3.3.Fat requirements for ostriches	37
2.3.3.4.Fiber requirements for ostriches	38
2.3.3.5. Vitamin & mineral requirements for ostriches	39
2.3.3.6. Water requirements for ostriches	41
2.4. Economics consideration	41
2.4.1.Economical comparison between ostrich and other livestocks	43
2.4.2. Economic efficiency of a pair of ostriches	44
3. MATERIALS AND METHODS	46
3.1.Materials	46
3.1.1.Ingredients used in the present study	46
3.1.1.1. Clover hay (CH)	46
3.1.1.2. Cotton seed meal (CSM)	47

3.1.1.3. Corn gluten meal (CGM)	47
3.1.1.4. Radicel (malt sprout)	47
3.1.1.5.Other ingredients.	47
3.1.2. The experimental diets	47
3.1.2.1. Grower diets	48
3.1.2.2. Finisher diets	48
3.1.3. Birds	51
3.1.3.1.Birds of the feeding experiment	51
3.1.3.2.Birds of the digestibility trial	51
3.1.4. Courts	51
3.2. Methods	51
3.2.1. Feeding experiment	51
3.2.2. Digestibility trial	52
3.2.3. Measurements and methods of interpretating results	54
3.2.3.1. Live body weight (LBW)	54
3.2.3.2. Live weight gain (LWG)	54
3.2.3.3. Growth rate percentage (GR)	.54
3.2.3.4. Total protein efficiency (TPE)	54
3.2.3.5. Feed consumption (FC)	55
3.2.3.6. Feed efficiency (FE)	55
3.2.3.7. Viability	55
3.2.3.8. Economic efficiency	55
3.2.3.9. Digestibility coefficients	56
3.2.3.10. Calculation of feeding value.	56
3.2.3.11. Calorific value	57
3.2.4. Analytical methods	58
3.2.4.1. Proximate analysis	58
3.2.4.1.1. Moisture	58

3.2.4.1.2. Crude protein (CP)	58
3.2.4.1.3. Ether extract (EE)	59
3.2.4.1.4. Crude fiber (CF)	59
3.2.4.1.5. Ash	59
3.2.4.1.6. Nitrogen free extract	59
3.2.4.1.7. Organic matter (OM)	59
3.2.4.2. Blood sampling and measurements	60
3.2.4.3. Statistical analysis	6 0
4. RESULTS AND DISCUSSION	61
4.1. Chemical composition	61
4.1.1. Chemical composition of some agro-industrial by-products	
used in the present study	61
4.1.1.1. Chemical composition of clover hay	62
4.1.1.2. Chemical composition of CSM	64
4.1.1.3. Chemical composition of CGM	65
4.1.1.4. Chemical composition of RCL	65
4.1.1.5. Chemical composition of the experimental diets	.57
4.2. Feeding experiment	68
4.2.1. Effect of replacing SBM with either CGM or CSM and	
replacing CH with RCL in diets on ostrich performance	68
4.2.1.1. Live body weight (LBW)	69
4.2.1.2. Body weight gain (BWG)	73
4.2.1.3. Relative Growth rate (RGR)	75
4.2.1.4. Feed consumption (FC)	78
4.2.1.5. Feed efficiency (FE)	7 9
4.2.1.6. Total Protein efficiency (TPE)	79
4.2.2. Effect of replacing SBM with either CGM or CSM and	
replacing CH with RCL in diets on economic efficiency	

(EEF) of ostrich	86
4.3. Nutrient digestibilities and feeding values of the experimental	
diets	91
4.3.1. Digestion coefficients	92
4.3.2. Feeding value	95
4.4. Effect of replacing SBM with either CGM or CSM and	
replacing CH with RCL in diets on some blood constituents	
of ostrich	100
4.4.1.Total protein	100
4.4.2. Total lipid	101
4.4.3. Plasma cholesterol	102
4.4.4. Plasma glucose	102
4.4.5. Plasma transaminases (AST & ALT)	103
4.4.6. Plasma calcium	103
4.4.7. Plasma phosphorous	104
5. SAMMARY AND CONCLUSION	106
6. REFERENCES	114
7. APPENDEX	
8. ARABIC SUMMARY	

LIST OF ABBREVIATIONS

ADF Acid detergent fiber

ALT Alanine transaminase

AME Apparent metabolic energy

AP Available phosphorus

ARC Agriculture Research Center

AST Aspartate transaminase

BWG Body weight gain

Co Centegrate

Ca Calcium

CF Crude fiber

CFD Crude fiber deduction

CGM Corn gluten meal

CH Clover hay

CP Crude protein

CSM Cotton seed meal

Cys Cystine

DCF Digestible crude fiber

CPD Digestible crude protein

DE Digestible Energy

DEE Digestible ether extract

Di-Ca-P Di-calcium phosphate

DM Dry matter

DNFE Digestible nitrogen free extract

EE Ether extract

EEF Economic efficiency

F Finisher

FC Feed consumption

FE Feed efficiency

GE Gross energy

g Gram

G Grower

IU International unite

K cal Kilo calorie

Kg Kilogram

LBW Live body weight

LE Egyptian pound

ME Metabolizable energy

Met Methionine

Min Minerals

N Nitrogen

Na cl Natrium chloride

NDF Neutral detergent fiber

NFE Nitrogen free extract

NRC National Research Council

OM Organic matter

P Probility

RCL Radicel (malt sprouts or Brewer's grains)

RGR Relative growth rate

SBM Soybean meal

SV Starch value

TDN Total digestible nutrients

TPU Total protein utilization

Vit Vitamin