Abstract

In *Drosophila*, the maternally localized gene *pumilio* is thought to act as a regulator of the posterior pattern in *Drosophila* embryo by binding to sites in the *hunchback* gene named Nanos Response Elements (NREs). Binding of pumilio to these sites represses the translation of the *hunchback* gene.

Recent work, at the University of Leeds, has identified a cDNA clone from the moss Physcomitrella patens cDNA library, that by sequence analysis showed to have strong homology with *Drosophila pumilio* gene. In this work, this cDNA clone (pPum 3a) was used as a probe to screen Physcomitrella patens genomic library constructed in bacteriophage vector λ-GEM 12(provided by Dr. M. Leech at John Innes Center). Southern blot has identified a fragment which was cloned at the Sst I site of the vector pBluescript SK+. The ca. 5.5kb genomic clone pGPum S2.2, had homology with the 3'region of the cDNA clone. Another similar work by Miss Irene Wier at the University of Leeds has identified another ca. 4 kb genomic clone (pGPums E461)(cloned at the Eco RI site of pBluescriptSK+) that has homology with both the 3'- region and 5'- region of the cDNA clone (pPum 3a). This clone was sequenced at this work. The first approach in sequencing was by creating nested deletions within the cloned ca. 4 kb fragment. Sequence and computer analysis of this clone suggest two readings to the protein coding region of the Physcomitrella pumilio gene and that the isolated clone might not be the whole Physcomitrella Pumilio gene. They also suggest that there could be a family of pumilio related genes within the moss *Physcomitrella patens*.

Contents:

Abstract	I
Contents	П
Tables and Figures	VI
Abbreviations	VIII
Acknowledgment	X
Chapter one: Introduction	
1.1 Animal development	3
1.2 Early development in Drosophila melanogaster	3
1.2.1 The anteroposterior axis	4
1.2.2 The anterior morphogenetic gradient	5
1.2.3 The posterior morphogenetic gradient	7
1.3 Conserved functions in animal development	11
1.3.1 Early development in Caenorhabditis elegans	11
1.3.2 Conservation of functions in vertebrates	14
1.3.3 Pumilio homologues in plant and fungi	15
1.4 Plant development	17
1.4.1 Early development in Arabidopsis thaliana	18
1.4.2 Fucus: embryogenesis in isolation	22
1.4.3Physcomitrella patens	23

Chapter two: Materials & Methods:

2.1 Materials	26
2.2 Media and solutions	29
2.3 DNA extraction	32
2.3.1 Large scale plasmid DNA extraction	32
2.3.2 Small scale plasmid DNA extraction	33
2.3.3 Extraction of phage Lambda DNA	33
2.4 DNA purification and concentration	34
2.4.1 Phenol chloroform extraction	34
2.4.2 Ethanol Precipitation	34
2.4.3 CsCl/Ethidium bromide density gradient centrifugation	34
2.5 Agarose gel electrophoreisis	35
2.6 Recovery of DNA from agarose gels	35
2.7 Determination of DNA size and concentration	36
2.8 Restriction endonuclease Digestion of DNA	36
2.9 Ligation of DNA	37
2.10 Preparation of competent cells for transformation with plasmid DNA	38
2.11 Storage of competent cells	38
2.12 Transformation of competent cells with plasmid DNA	39
2.12.1 CaCl ₂ transformation	39
2.12.2 Blue / white colony screen	39
2.13 Radiolabeling of DNA	40

2.13.1 Radiolabeling of DNA using oligolabelling	40	
2.13.2 5'-end labeling of primers	40	
2.14 Purification of radiolabelled DNA		
2.15 Scintillation counting of probes	41	
2.16 Southern DNA transfer	42	
2.16.1 Binding of the DNA to the membrane	42	
2.16.2 Prehybridisation	43	
2.16.3 Hybridization	43	
2.16.4 Washing	43	
2.16.5 Autoradiography	44	
2.16.6 Developing Autoradiograph	44	
2.17 Plaque Hybridisation	45	
2.18 Exonuclease III/ mung bean nuclease deletions	45	
2.19 DNA sequence determination	47	
2.20 Computer analysis	49	
Chapter three: Characterization of pumilio genomic clones		
3.1 Screening of moss genomic library	51	
3.2 Isolation of three genomic clones	52	
3.3 Analysis of the isolated clones	57	
3.4 Subcloning the genomic digests into pBluescript SK+	61	

Chapter four: Analysis of genomic subclones	
4.1 Restriction analysis of clones pGPumS2.2 and pGPum E461	66
4.2 Sequence analysis of clone pGPum E461	67
4.3 Computer analysis of sequence data	77
Chapter five: Discussion	
5.1 Pumilio-like sequences from <i>Physcomitrella patens</i>	88
5.1.1 Homologies between clones	88
5.1.2 Coding potential of pGPum E461	91
5.1.3 Database homology searches with pGPum E461 DNA sequences	96
5.1.4 A proposed DNA sequence	
	99
5.1.5 Homologies between pumilio like proteins	104
5.2 Future priorities	104
5.2.1 Further Characterization of moss genes	107
5.2.2 What is the biological role of pumilio-like gene?	108
5.2.3 Biochemical function of the pumilio like protein	110
5.3 Conclusions	112
References	114

ABBREVIATIONS

A : Adenine
Amp : Ampicillin
bp : base pairs
C : Cytosine

CCC: Covalent Closed Circular cpm: counts per minute

ddNTP: 2'-3' dideoxynucleoside triphosphate

DNA: deoxyribonucleic acid cDNA: complementary DNA

dNTP: 2'-deoxy nucleoside triphosphate

EDTA: ethylene dinitrilotetra acetic acid, sodium salt EtBr: 3,8,-diamino-5-ethyl-6-phenylphen-anthridium

bromide (ethidium bromide)

G : Guanine

IPTG: Isopropyl-β-D-thiogalacto pyranoside

kb : kilo base pair min. : minute

M_r : relative molecular mass

OD : Optical Density
O/N : Over night
RNA : ribonucleic acid
mRNA : messenger RNA
rpm : revolution per minute
SDS : sodium dodecyl sulphate

T : thymine
Tet : tetracycline

Tris : 2-amino-2-(hydroxymethyl)-1,3-propanediol

UV: ultra violet

v/v : volume(ml) per volume(ml) w/v : weight(g) per volume(ml)

X-gal: 5-bromo-4-chloro-3-β-D-galactopyranoside

 Δ : deletion

Amino Acids

C	Cys	Cysteine
A	Ala	Alanine
G	Gly	Glycine
N	Asn	Aspargine
S	Ser	Serine
F	Phe	Phenylalanine
P	Pro	Proline
L	Leu	Leucine
Q	Gln	Glutamine
V	Val	Valine
D	Asp	Aspartic Acid Aspartate
E	Glu	Glutamic acid Glutamine
I	Ile	Isoleucine
W	Trp	Tryptophan
R	Arg	Arginine
M	Met	Methionine
Y	Tyr	Tyrosine
H	His	Histidine
K	Lys	Lysine
T	Thr	Threonine