CONTENTS

1- ACKNOWLEDGEMENTS	1
2- INTRODUCTION	2
3- REVIEW OF LITERATURE	
I- Toxicity of organophosphorus compound	3
II- Relative toxicity of Bacillus Thuringiensis on Spodoptera	
Littoralis (Biosd.)	7
III- the Toxicological & Biological effects of IGR	
(flufenoxuron) on Spodoptera Littoralis (Boisd.)	11
IV- Histological effects of flufenoxuron Bacillus	
thuringiensis on Integument and mid gut of 6th larval instar	
of Spodoptera Littoralis.	22
4- MATERIALS AND METHODS	
A- Rearing technique	25
B- Chemical Insecticides	
a- Organophosphorus (cyanophos)	25
b- Bactericide (Bacillus thuringiensis)	26
c- Insect growth regulator (flufenoxuron)	26
C- Bioassay Technique	
a- Sussceptibility test	27
b- Biological & morophogenetic studies	27
c- Histological studies	27

5- RESULT AND DISCUSSION

Part I	
I- Toxicological effect of organophosphorus (cyanophos)	30
Part II	
II- Toxicological and Biological effects of Bacillus	
thuringiensis on Spodoptera littoralis (Boisd.)	
a- Acut toxicity	33
b- Biological effects	
1- Effect on larval duration	. 36
2- Effect on pupal duration	36
3- Effect on pupal weight	37
4- Effect on pupation and adult emergence	38
5- Effect on adult longevity, fecundity and fertility	40
6- Morphogentic effects	45
Part III	
III-Toxicological and Biological effects of IGR (Flufenoxurn)	
(1) Acute toxic effect	49
(2) Latent effects	
a- Larval duration	49
b- Pupal duration	52
c- pupal weight	52
d- percentage of pupation	52
e- percentage of adult emergence	52
f- Adult longevity	53
g- Total oviposition period	53
h- Effect on fecundity and fertility	53
i- Morophogenetic effects	

1- larval deformities	58
2- larval pupal intermediate	58
3- pupal deformities	58
4- Adult deformities	58
Part IV	
6- HISTOLOGICAL STUDIES	
1- Mid gut	64
2- Integument	56
7- SUMMERY AND CONCLUSION	72
8- REFERENCE	73

SUMMARY AND CONCLUSION

The insecticidal, Biological and morphogenetic effects of flufenoxuron *Bacillus Thuringiensis* (Agerin) and cyanophos, as well as the effect of the two most active compounds (flufenoxuron, *Bacillus Thuringiensis*) on the histology of the mid gut and integument of 6th instar larvae of *Spodoptera littoralis* treated as 4th larval instar with LC50 of the previous compound.

The insect growth inhibitor flufenoxuron was the most toxic compound against the larvae of 2nd and 4th instar of *S. littorali*. Both compounds of flufenoxuron and *Bacillus thuringiensis* tested significantly increased (P< 0.05) the mean larval and pupal durations. On the other hand both compounds decreased the percentage of pupation, adult emergence, the mean pupal weight, adult longevity, fecundity and fertility. However the preoviposition, oviposition and postoviposition periods differed according to the compound used.

Flufenoxuron was decreasd significantly the oviposition period , while increased significantly the post -ovipositon period .Both compounds of flufenoxuron, and *Bacillus thuringiensis* (Agerin) exhibited larval, pupal and adult deformities as well as pupal-adult intermediates. Larval and pupal deformities were increased in case of flufenoxuron .

Treatment of 4th instar larvae of *S. littoralis* with flufenoxuron and *Bacillus thuringiensis* resulted in sever histological changes in the integument and midgut of surviving late 6th instars. Flufenoxuron disrupted formation of endocuticle whereas *Bacillus thuringiensis* (Agerin) effected only the hypodermis. The most prominent changes induced by these two compound for the midgut was the vacuolation of epithelial cells and disruption of peritrophic membrane.