ABSTRACT

In Egypt, wheat (Triticum aestivum L.) is one of the most important cereal crops. Stem rust of wheat caused by Puccinia graminis f.sp. tritici is a widespread disease in Egypt attacking wheat plant causing a great losses in the yield. This work was carried out to make further studies to control stem rust of wheat. Race identification during different seasons using the classical method of identification was occurred indicating that race 11 was the most frequent one while pathotype PTTTT was the most frequent pathotype during 2003/2004 growing season, using the recent method of identification. Also, Gene efficiency and slowrusting in many commercial wheat cultivars were evaluated. RAPD technique was used to determine the differences in DNA for some wheat cultivars evaluating the similarity between cultivars and between some races. Effect of spraying wheat plants in both seedling and adult stages with different chemical compounds, plant extracts, salt solutions and two kinds of polymers was studied to control stem rust of wheat. Also spraying wheat plants with two types of polymers under field conditions was carried out to control the stem rust of wheat through the lowering of rust severity and evaluation of their effect on yield components. Physiological studies on previously sprayed healthy and infected adult plants with some chemicals, plant extracts and salt solutions were carried out to estimate the activities of peroxidase and polyphenoloxidase enzymes as well as the phenol contents. Also, chlorophyll contents were determined in plants previously sprayed with two types of polymers. Scanning electron microscopic examinations were performed to study the effect of spraying wheat plants using some inducers and some polymeric materials to control stem rust of wheat. .-

-

-

CONTENTS

Page

.

INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Identification of physiological races	3
1.1. Classical method for race identification	3
1.2. Recent method for identification	4
2. Postulation of genes for stem rust resistance (Sr)	5
3. Slow-rusting	7
4. DNA isolation and random amplified polymorphic DNAs	
(RAPDs) technique	11
4.1. Wheat cultivars	11
4.2. Physiological races analysis by RAPDs technique	13
5. Induced resistance	15
5.1. Indole Acetic Acid (IAA)	15
5.2. Bion [®]	16
5.3. Salicylic acid (SA)	18
5.4. Oxalic acid (OA)	21
5.5. Plant extracts	22
5.6. Salts	23
5.7. Polymers	25
6. Physiological studies	27
6.1. Enzymatic activity	27
6.1.1. Peroxidase activity (PO)	27
6.1.2. Polyphenoloxidase activity (PPO)	29
6.2. Phenolic compounds	31
6.3. Photosynthetic pigment content	32
7. Scanning micrography	33
3. Chemical control	34
MATERIALS AND METHODS	36
1. Isolation and identification of physiological races	36
1.1. Source of samples	36
1.2. Isolation and inoculation	36
1.3. Rust assessment	37

7.1. Effect of indole acetic acid (IAA)	121
7.2. Effect of bion [®]	121
7.3. Effect of salicylic acid (SA)	121
7.4. Effect of oxalic acid (OA)	127
7.5. Effect of film-forming polymers	127
8. Chemical control	132
DISCUSSION	134
SUMMARY AND CONCLUSION	149
REFERENCES	157

الملخص العربي

~

~

٠

LIST OF ABBREVIATION

AAB:	Advanced American	mM:	millimolar
[Biotechnology	mm ² :	millimeter squar
APC:	l-aminocyclopropane	MR:	moderately resistant
1	-1-carboxylic acid	No.p./	cm²: number of
AUDP	C: area under disease		pustules/cm ²
-	progress curve	OA:	oxalic acid
BABA	: Dl-B-aminobutyric acid	ppm:	part per million
BER:	blossom-end rot	pgt:	Puccinia graminis f.sp.
ce:	chlorophyll content		tritici
cm:	centimeter	PCR:	polymerase chain
CMV:	cucumber mosaic virus		reaction
chl:	chlorophyll	PPO:	polyphenoloxidase
cv.:	cultivar	PO:	pcroxidase
, d.:	day	PRA:	photosynthesis rate per
DNA:	dioxyribose nucleic acid		unit leaf area
eq:	equivalent	PS:	pustule size
ERI:	emergence rate index	R:	resistant
EW:	emulsion wax	RAPD	: random amplified
GS:	growth stage		polymorphic DNA
hr.:	hour	S:	susceptible
IAA:	indole acetic acid	SA:	salicylic acid
i.e.:	that is	SAE:	styrene-acrylic emulsion
ISR:	induced systemic resistance	SAR:	systemic acquired
fT:	infection type		resistance
KCI:	potassium chloride	SCAR	: sequence characterized
Kg:	kilo gram		amplified region
LAR:	local acquired resistance	SEM:	scanning electron
L:	length		microscope
1:	liter	TEM:	transmission electron
, M:	molar		microscope
mg:	milligram	TKW:	thousand kernel weight
min.:	minute	TNV:	tobacco necrosis virus
ml:	milliliter	TR:	transpiration rate
		μ g:	microgram
		μg/ml:	microgram per milliliter
		UV:	ultraviolet
1		\mathbf{v}/\mathbf{v} :	volume per volume
		W:	width

.