ABSTRACT

Mamdouh Ahmed Ebrahim El-Shamy. Studies on micropropagation of some woody ornamental plants. Unpublished Doctor of Philosophy (Ph.D.) dissertation, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2004

Due to the difficulty in propagating *Magnolia grandiflora*, *Cycas revoluta* and *Cassia nodosa* and realizing their significance as important ornamental woody plants and also their versatile uses in landscape gardening, the aim of this study was to reach a well-defined protocol to easily *in vitro* propagate each of the three understudy above species.

This was carried out by: 1) investigating the most suitable treatments for surface sterilization, 2) finding out the most suitable explants for the micropropagation, 3) trying out various nutrient culture media, and 4) by manipulating growth using various concentrations of different growth regulators.

Magnolia grandiflora shoot tips and seeds and *Cycas revoluta* seeds, leaves and roots were tried as explants. As for *Cassia nodosa*, shoot tips, seeds, leaves, buds and internodes were all utilized as explants. All explants of *Magnolia grandiflora* were effectively surface sterilized with a mixture of mercuric chloride (Hg₂Cl) and sodium hypochlorite (NaOCl) as commercial Clorox were used at 2% NaOCl plus 4 mg/l Hg₂Cl and at 1.5% NaOCl plus 2 mg/l Hg₂Cl, respectively. Similarly, 2.0 % NaOCl plus 2.0 mg/l Hg₂Cl, 2.5 % NaOCl and 4.0 mg/l Hg₂Cl, in respect order were effective for sterilizing seeds and root explants of *Cycas revoluta*. Shoot tips and seed explants of *Cassia nodosa* showed the same trend as in *Magnolia grandiflora* where 2.0 % NaOCl plus 2.0 mg/l Hg₂Cl were suited for sterilizing leaves, buds and internode explants.

Shoot tip explants of *Magnolia grandiflora* cultured on the woody plant medium (WP) managed to establish effectively and was favorable when compared to Murashige and Skoog (MS) during the initial establishment stage. In detail, this was valid when WP medium was compared with MS media (at full, half and quarter strength). Moreover, IBA was better than IAA during the establishment of *Magnolia*, which was apparent quite clearly in the elongation of shoot tips. Notably, seed explants of *Magnolia*, however, failed to further establish or multiply under the conditions employed in this study. In *Cycas revoluta*, NAA at 4.0 mg/L was the best concentration for plantlet formation direct from seeds. Moreover, seed explants of *Cycas revoluta* were better than leaf and root for callus formation with MS medium plus 100 mg/l 2,4-D, 3.0 mg/l 2ip and 1.0 mg/l NAA. Unfortunately, all explant types taken from *Cassia nodosa* did not give any noted response and failed to establish.

In the multiplication stage of *Magnolia grandiflora*, 5.0 mg/l Kin formed not only the highest number of shoots but also in the extension of lengths in shoots. Kin was better than BA during the multiplication stage of *Magnolia grandiflora*. In *Cycas revoluta*, MS medium (plus 100 mg/l 2,4-D, 3.0 mg/l 2ip, 1.0 mg/l NAA and 40 g/l sucrose plus 2.0 mg/l calcium pantothenate) was suited for callus formation. MS medium supplemented with 3.0 mg/l BA and 3.0 g/l activated charcoal when incubated in the dark was favorable to form organs (i.e. tiny shoot) from callus. Subculturing on MS medium supplemented with 2.0 mg/l NAA led to increases in the shoot lengths.

For *in vitro* rooting, 2.0 mg/l IBA was more suitable than 1.0 or 3.0 mg/l to form roots on *Magnolia grandilfora* shoots when added to WP medium. IBA was better than IAA for the rooting stage. The shoots of *Cycas revoluta* successfully rooted when they were left to root *in vivo* after being dipped briefly in 'Rootone' (a commercial root agent compound containing 4.4 % Thiram and 0.2 % NAA).

Key words: Micropropagation, In vitro culture, Magnolia grandiflora, Cycas revoluta, Cassia nodosa, Shoot tips, Seeds, Buds, Leaves, Internodes or Roots, Establishment, Multiplication, Rooting.

-

_

LIST OF CONTENTS

<u>SUBJECTS</u>	<u>PAGE</u>
LIST OF TABLES	iv
LIST OF PLATES	vi
LIST OF FIGUERS	vii
LIST OF ABBREVIATIONS	viii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
3. MATERIALS AND METHODS.	23
3.1.Preface.	23
3.2.Plant Material.	23
3.3. Surface Sterilization of Explants.	23
3.4. Preparation of Explants:	24
3.5.Culture Media.	24
3.6.General Culture Procedure.	24
3.6.1.At the establishment stage.	24
3.6.2.At the multiplication stage.	25
3.6.3.At the rooting stage.	25
3.7. Specific Experimental Treatments.	25
3.7.1.For Magnolia grandiflora.	25
3.7.2.For Cycas revoluta.	27
3.7.3.For Cassia nodosa.	29
3.8.Culture Room Conditions.	30
3.9. Experimental Design and Statistical Analysis.	31
3.10.Data Collected and Observations Made.	31
4. RESULTS.	32
4.1. Influence of different concentrations of sodium	32
hypochlorite and mercuric chloride during surface	
sterilization.	
4.1.1. On survival of shoot tip explants.	32

.

4.1.2. On survival of seed explants.	32
4.1.3. On survival of Bud and Leaf and Internode	36
explants.	
4.1.4. On survival of root explants.	36
4.2. Influence of media during the establishment stage.	37
4.2.1. On survival of Magnolia shoot tip explants.	37
4.2.2. On browning of Magnolia shoot tip explants.	37
4.3. Influence of Auxins during the establishment	41
stage.	
4.3.1. Influence of IAA on Magnolia shoot length.	41
4.3.2. Influence of IBA on Magnolia shoot length.	41
4.3.3. Influence of NAA on Cycas plantlet formation	43
from seed explants.	
4.4. Influence of different Cycas explant types on callus	43
formation during the establishment stage.	
4.5. Influence of Cytokinins during the multiplication	49
stage.	
4.5.1. Influence of BA on Magnolia shoot tips.	49
4.5.2. Influence of Kin on Magnolia shoot tips.	51
4.5.3.A comparison between the effect of BA and	53
Kin on Magnolia shoot tips.	
4.6. Influence of Cycas explant types on callus	55
formation.	
4.7. Influence of calcium pantothenate and/or sucrose	55
on vitrification of Cycas callus.	
4.8. Influence of BA on Cycas organogensis.	61
4.8.1. Influence of BA and light or darkness without	61
the use of activated charcoal.	
4.8.2. Influence of BA and with or without the use of	61
activated charcoal in darkness.	

-

-

4.9.Influence of NAA And Kin on Cycas shoot	
formation.	
4.10. Influence of culture media and auxins during the	66
rooting stage.	
4.10.1. Influence of media types and IBA on in vitro	66
rooting of Magnolia.	
4.10.2. Influence of media types and IAA on in vitro	71
rooting of Magnolia.	
4.10.3. A comparison between the effect of IBA and	75
IAA on in vitro rooting of Magnolia.	
4.10.4. Influence of a commercial rooting agent on in	75
vivo rooting of Cycas.	
DISCUSSION	7 9
SUMMARY AND CONCLUSIONS	84
REFERENCES	87
APPENDICIES	96
ARABIC SUMMARY	

-

5. 6. 7.

8.

~

LIST OF ABBREVITATIONS

AC	Activated charcoal
AR	Anderson medium
B5	Gamborg et al medium
BA (BAP)	Benzyladenine or 6-benzylaminopurine
4-CPA	4-chlorophenoxy acetic acid
cv (s)	Cultivar (s)
2,4-D	2,4-dichloro phenoxy acetic acid
DIECA	Diethyl-dithiocarbonate
GA ₃	Gibberellic acid
IAA	Indole acetic acid
IBA	Indole butyric acid
2ip	2-isopentenyl aminopurine
Kin	Kinetin (6-furfurylaminopurine)
LS	Linsmaier & Skoog medium
μΜ	Micro mol
mМ	Milli mol
MS	Murashige & Skoog medium
NAA	Naphthalene acetic acid
NOA	Naphthoxy acetic acid
PEMs	Proembryogenic masses
ppm	Part per million
PVP	Polyvinyl pyrrolidone
S-medium	Standardi and Catalano medium
SH	Schenk-Hildebrandt medium
2,4,5-T	2-naphthalcnyloxy acetic acid
VW	Vacin & Went medium
WH	White medium
WP	Woody Plant medium