ABSTRACT

Howida Abdallah Mohammad. Application of Molecular Biology for Production of Dairy Products of Medical Importance. Unpublished Ph.D. Dissertation, Ain Shams University, Faculty of Agriculture, Department of Food Science, 2006.

Classical phenylketonuria is the most common inborn error of amino acid metabolism. It is caused by deficiency of the phenylalanine hydroxylase enzyme. Accumulation of phenylalanine in brain leads to severe mental retardation. A low phenylalanine diet can significantly prevent the occurrence of mental retardation, and is so essential for the hyperphenylalaninemic mothers.

This study was planned to achieve a low phenylalanine formula prepared from cow skim milk with adding amino acids and vitamins to supply the needed recommended intakes of the essential amino acids, carbohydrates, fat, minerals and vitamins that are usually supplied by natural milk protein intake.

Skim milk hydrolysate was obtained using two genetically prepared and SDS/PAGE purified, immobilized proteolytic enzymes (papain and protease XXIII from *A.oryzae*). The debittering was accomplished by two methods based on activated carbon and barium sulphate adsorption in order to achieve the most balanced amino acids pattern with high biological value and palatable nonbitter taste to accomplish the feeding treatment aims. BALB/c mice were used as a model for introduction of hyperphenylalaninemia with 3% L-phenylalanine and 0.3% Lethionine. The histopathological, immunological, lipids, protein and blood profiles before and after mutagenesis were compared in blood, brain, kidneys and liver of the experimental mice model as well as feeding on the two achieved skim milk hydrolysates. Also, a comparison was done by feeding with one of the available commercial lowphenylalanine formula.

To conclude, one of the achieved skim milk hydrolysate treated with barium sulphate proved to be effective in preventing and reversing most of the pathological and abnormal phenylketonuria syndromes. It was nutritionally safe, microbiologically free, with high biological value, protein efficiency ratio, net protein ratio, and food efficiency. In the same time, it was characterized by being cheap and easy to obtain for straightaway use.

Key words: Phenylketonuria - mutagenic mice - low phenylalanine - activated carbon - barium sulphate - skim milk hydrolysate - protein efficiency ratio - net protein ratio - mental retardation.

CONTENTS

		Page
List of	Tables	viii
List of	Figures	xiii
List of	Abbreviations	xvi
Introdu	iction	1
Review	of Literature	3
I. Defini	ition of milk	3
II.Nutri	tional and biochemical properties of Human	3
milk		
II.1.	Physical nature and general composition of human milk	4
II.2.	Proteins	5
	II.2.1. Comparison between human and bovine milk proteins	6
	II.2.2.Difference between premature and mature milk	7
	II.2.3. Physiological role of milk proteins	8
	II.2.4. Biologically active proteins in milk	10
	II.2.5. Bioactive peptides in milk protein hydrolysates	13
II. 3.	Human milk mucins	15
II.4.	Content and use of non protein nitrogen (NPN)	15
II. 5.	Protein enzymes (Protease)	16
III. PI	henylketonuria (PKU)	19
III.1.	Definition	19
III.2.	Background	20

•

III. 3.	Incidence of PKU	21		
III.4.	Epidemiology	21		
III. 5.	Gene locus			
III.6.	Causes of phenylketonuria	22		
III. 7.	Metabolism of PAH in Mammalian Tissue	23		
	III.7.1. Phenylalanine hydroxylase (PAH)	24		
	reaction III 7.2 Permission of PAH activity	24		
	III.7.2. Regulation of PAH activity	24		
III.8.	Role of tyrosine in the phenylketonuria malady	25		
IIJ.9.	Classification of hyperphenylalaninemia syndromes	27		
III.10.	Newborn screening	29		
III.10. III.11.	Treatment	29		
111.11.	III.11.1.Classical PKU	30		
	III.11.2. Patients with tetrahydrobiopterin	32		
	(BH ₄)	52		
	III.11.3. Protein tailoring	33		
	III.11.4. Diet control therapy	33		
	III.11.5. Infant formula	35		
	III.11.5.1. Background	35		
	III.11.5.2. Human milk as a suitable	37		
	model for the design of			
	infant formula			
	III.11.6. Is diet "For life" necessary?	39		
	III.6.1. Difficulties in dietary	40		
	compliance in late childhood			
	and adolescent patients with PKU			

-

	III.11.7. Recommendations for protein and energy intakes by patients with	41
	phenylketonuria	
	III.11.7.1. Resting energy expenditure	43
	III.11.8.Breastfeeding in phenylketonuric	44
	babies	
	III.11.9. Gene therapy	45
III. 12.	Clinical Picture	46
	III.12.1.Bone mineralization	46
	III.12.2. Thyroid hormones	46
	III.12.3. Hemostatic factors and cholesterol	47
	level	
	III.12.4. Minerals and Vitamins in PKU	48
	III.12.5. Intelligence quotient (IQ) in PKU	48
	III.12.6. Ubiquinone deficiency in PKU	49
	III.12.7. Phenylalanine requirements in a	49
	preterm infant with classical	
	phenylketonuria	
	III.12.8. Serum selenium in adults with	50
	phenylketonuria	
	III.12.9. Growth of phenylketonuric (PKU)	50
	children up to two years	
	III.12.10. Neuron apoptosis induced by	52
	phenylalanine	
	III.12.11. Brain myelination	53
	III.12.12. Carnitine status in phenylketonuric	54
	patients on dietary treatment	
	III.12.13. Blood level of phenylalanine	54

	III.12.14. Hematologic and immunologic parameters	55
III.13.	Maternal phenylketonuria and	55
	hyperphenylalaninemia	
	III.13.1. Variation in blood phenylalanine	57
	with menstrual cycle in women with	
	phenylketonuria (PKU)	
	III.13.2.Congenital Heart Disease in maternal	57
	phenylketonuria	
	III.13.3. Nutrition and reproductive outcome	58
IV. Biote	echnology for diet of phenylketonuria cases	59
IV.1.	Enzymatic hydrolysis of protein	59
IV.2.	Removing phenylalanine from the	73
	hydrolysates	
IV.3.	Properties of hydrolysates	8 0
IV.4.	Nutrition value of the hydrolysates	92
IV.5.	Treatment with infant formula and with	93
	hydrolysates	
IV.6.	Mice as an animal model for PKU	97
Materia	ls and Methods	97
I. Materials		97
I.1.	Skim milk powder	97
I.2.	Low-phenylalanine powder	97
I. 3 .	Enzymes	97
I.4.	Chemicals	97
I.5	Expermental animals	98
II. Expe	rimental procedures	98
II.1.	Skim milk hydrolysis	98
II.2.	Biological evaluation	99

II.2.	Biological evaluation	99
	II.2.1. Animal feeding experiment	99
	II.2.2. Design of experiment	101
	II.2.2.1.Normal BALB/c mice	101
	II.2.2.2.BALB/c mice phenylketonuria	103
	model	
	II.2.3. Phenylketonuria mice under dietary	103
	treatment	
II.4	Phenylalanine level	103
II.5	Histological section	104
II.6	Sampling	104
	II.6.1. Blood	104
	II.6.2. Organs	105
	II.6.3. Feces	105
III.Ana	lytical methods	105
III.1.	Protease activity	105
III.2.	Degree of hydrolysis (D.H.)	106
III.3	Adsorption process	106
	III.3.1. Activated carbon treatment of skim milk hydrolysates	106
	III.3.2. Barium sulphate treatment of skim milk hydrolysates	107
III.4.	Sensory analysis	107
III.5.	Amino acid analysis	107
III.6.	Protein determination	107
III.7	Determination of fat content	107
III.8.	Mineral measurements	108
III.9.	Moisture	108

III.10	Ash	108	
III.11	Lactose		
III.12	Determination of pH value		
III.13	Feed efficiency (FE)	108	
III.14	Net protein ratio (NPR)	108	
III.15	Digestibility coefficient (DC)	109	
III.16	Net protein utilization (NPU)	109	
III.17	The biological value (BV)	110	
III.18	Protein efficiency ratio (PER)	110	
III.19	Phenylalanine level measurement using HPLC	110	
III.20	Preparation of histological section	112	
III.21	Serum lipid assay	113	
	III.21.1.Determination of total cholesterol	113	
	III.21.2.Determination of high density	113	
	lipoprotein cholesterol (HDL)		
	III.21.3.Determination of triglycerides	113	
	III.21.4.Determination of VLDL+LDL Cholesterol	113	
	III.21.5.Determination of Atherogenic index	114	
	III.21.6.Determination of risk ratio	114	
III.22.	Serum protein assay	114	
	III.22.1.Dtermination of total protein	114	
	III.22.2.Determination of albumin	114	
	III.22.3. Determination of globulin	114	
III.23	Blood picture	115	
	III.23.1.Determination of hemoglobin	115	
	III.23.2.Count of red blood cells	115	

	III.2	23.3.Count of white blood cells	115			
	III.23.4.Determination of volume hemoglobin 115					
III.24	Imn	nunological parameters	115			
III.25	Mic	robiological assay	115			
	III.2	25.1.Total plate count	115			
	III.2	25.2.Detection of coliform group	116			
	III.2	25.3. Detection of yeast and molds	116			
III.26	Stat	istical analysis	116			
Results and Discussions			109			
Part I		Preparation of low-phenylalanine formula	109			
	A	Composition of formulae	109			
	B	Normal mice feeding with achieved	138			
		formulae				
Part II		Mice feeding with the achieved formulae	139			
	A	Induction of hyperphenylalaninemia and	139			
		mutagensis in mice				
	B	Feeding treatment	144			
	С	Histopathological finding in mice	153			
	D	Lipids and protein in tissues and blood	198			
	Ε	Immunological profile and blood picture	214			
		of the experimental mice groups				
Summa	ry a	and Conclusions	219			
Referen	ıces		231			
Arabic	Sun	ımary				

LIST OF ABBREVIATIONS

%	:Percentage
α	:Alpha
β	:Beta
κ	:Kaba
μ	:Micro
5-HTP	:5-hydroxytryptophan
AAM	:Amino acid mixture
AAP	:Acid amino peptidase
AAV	:Adeno-associated virus vector
ACE	:Angiotensin converting enzyme
AGE	:Agrose gel electropheresis
AOAC	:Association of official analytical chemist
ATP	:Adenosine triphosphate
BBB	:Blood brain barrier
BF	:Breastfed
BH^4	:Tetrahydrobiopterin
BMD	:Bone mineral density
BV	:Biological value
Ca	:Calcium
CBC	:Cell blood count
cDNA	:complementary DNA
CHD	:Congenital heart disease
DC	:Digestibility coefficient
DH	:Degree of hydrolysis
dl	:Deciliters
DNA	:Deoxynucleic acid
DPP	:Dipeptidyl peptidase
EDTA	:Ethylene diamine tetera acetic acid
ER	:Endoplamic reticulum

·

ESADD	: Estimated safe and adequate daily dietary
Fe	: Iron
FE	: Feed efficiency
FF	: Formula fed
g	: Gram
GMP	: Glycomacropeptide
H_2O_2	: Hydrogen peroxide
Hb	: Hemoglobin
HCL	: Hydrochloric acid
HDL	: High density lipoproteins cholesterol
HMGR	:3-hydroxy 3-methyl gltaryl coenzyme A reductase
HPA	: Hyperphenylalaninaemia
HPLC	:High performance liquid chromatography
Ig	: Immunoglobulin
IQ	: Intelligence quotient
IU	: International units
kDa	: Kilodalton
Kg	: Kilogram
Km	: Michaelis constant
LAP	: Leucine amino peptidase
LBN	: Lean body mass
LDL	: Low density lipoprotein
Lf	: Lactoferrin
LNAA	: Large nutral amino acid
LP	: Lactoperoxidase
LPP	: Low phenylalanine peptides
LUPUFA	: Long-chain polysaturated fatty acid
MHP	: Mild hyperphenylalaninaemia
MPH	: Milk protein hydrolyzates
MPKUCS	
MRC	: Medical Research Counical

mRNA	: Messenger ribonucleic acid
MWD	: Molecular weight distribution
Ν	: Nitrogen
NaCl	: Sodium chloride
NPN	: Non protein nitrogen
NPR	: Net protein ratio
NPU	: Net protein utilization
PAH	: Phenylalanine hydroxylase
PER	: Protein efficiency ratio
pН	: Negative log of hydrogen ion concentration
Phe	: Phenylalanine
PHF	: Partially hydrolyzed formula
PKU	: Phenylketonuria
QDDPR	: Dihydropteridine reductase
RBC	: Red blood cells
RDA	: Recommended daily allowance
REE	: Resting energy expenditure
SBA	: Secondary butyl alcohol
SDS/PAGE	:Sodium dodecyl sulphate/Purified agrose

SDS/PAG	E :Sodium	dodecyl	sulphate/Purified	agrose	gel
	electroph	noresis			
Se	: Seleniu	n			

SMA	: Synthetic milk adapted
-----	--------------------------

TBN	: Total body nitrogen
-----	-----------------------

TCA	: Trichloroacetic acid
-----	------------------------

TNBS	: Trinitro-benzene-sulfonic acid
------	----------------------------------

Tyr	: Tyrosine
TI	• I Init

U	: Unit

: United States of America USA

- : Very low density lipoprotein VLDL
- : World Health Organization WHO
- WP :Whey proteins

WPC	:Whey protein concentrate
Zn	:Zinic