Name of Candidate:	Dina Abd El-Zaher Ahmed Afifi	Degree:	Ph.D.
Title of Thesis:	Biochemical and Toxicological Studi	es on The Eff	ect of Some
	Plant Extracts on Pink Bollworm,	Pectinophora	Gossypiella
	(Saunders), in Relation to Their Pheno		
Supervisors:	Dr. Adel Sayed Afify, Dr. Alia Moha	med Abd El-H	afez and Dr.
-	Amr Ahmed Mostafa		
Department:	Agricultural Biochemistry		
Branch:	e e e e e e e e e e e e e e e e e e e	Approval:	

ABSTRACT

The present study aimed to determine the efficacy of extracts from five selected plants (pomegranate peels, olive leaves, mulberry leaves, acacia pods, and guava leaves); in relation to their phenolic contents; on the pink bollworm (*P. gossypiella*).

1. Extractability of Phenolic Compounds in Various Solvent Systems

Among the plant samples studied, mulberry leaf extract showed the lowest level of PCs, while acacia pods extract contained the highest amount. On the other hand, moderate phenolic levels were found in extract of pomegranate peels, guava leaves and olive leaves. Data also revealed that the PCs varied tremendously according to the used solvent system. The extracting solvents could be arranged according to its efficacy in extracting of PCs as follows: acetone > ethanol > ethyl acetate > n-butanol > methanol.

2. Insecticidal Activities of Plant PCs Extracted With 80% Acetone

Results indicated that the mortality rates increased with the increasing of the used concentration and the period after treatment. Based on the LC_{50} values, it could be arranged the tested extracts according to their toxicity in a descending order as follows: pomegranate peels and olive leaves > mulberry leaves > acacia pods and guava leaves. Data also demonstrated that the anti-herbivore effects of the tested extracts on the pink bollworm larvae cannot be directly predicted from their content of PCs as quantified in extracts.

3. Insecticidal Activities of Reference Phenolic Compounds

Data indicated that the larval mortality percentages had a positive relationship with both the concentration of PCs and the period after treatment. Regarding the toxicity index of reference PCs, it could be arranged the tested compounds in descending order as follows: Guaiacol > catechol > resorcinol, orcinol, phloroglucinol, and hydroquinone > tannic acid. Compilation between these results and chemical configurations of PCs reveals structure-activity relationships.

4. Behavioral Bioassay

Antifeedant tests showed that the consumption rates for all plant PCs were low compared to the control, except for mulberry. Statistical analysis showed that the PBW larvae survived similarly on the control and plant PC diets, where the plant PCs did not significantly alter larval weight. Correlation tests failed to found a significant correlation between the concentration of the plant PCs and feeding reduction. Residual contact tests showed that the pomegranate PCs was less harmful when contacted to larvae. It caused only 10% mortality after 2 days of treatment. On the other hand, PCs of olive and mulberry leaves showed 63.6 and 60% mortality. These percentages were higher than those achieved by the feeding method (50%). When larvae were exposed to PC residues of acacia pods and guava leaves, mortality percentages were nearly close to those achieved in feeding method (50%). Regarding the percentages of mortalities induced by the LC₅₀, it could be noted that, pomegranate PCs brings their effect by alimentation while, PCs of olive and mulberry leaves gave their effects by contact. PCs of acacia pods and guava leaves acting via contact and ingestion.

5. Effect of Plant PCs on Larval and Pupal Stages

In the present study, PCs of pomegranate peels, acacia pods and guava leaves caused significant retardation in larval development. Conversely, olive PCs shortened larval period significantly. On the other hand, mulberry PCs did not affect larval period. Significant prolongation in the pupal period was also detected as a result of treatments with PCs of pomegranate peels, olive leaves and acacia pods. Conversely, shortened pupal periods were achieved as a result of treatment with mulberry and guava PCs. Accordingly, PCs of pomegranate peels, acacia pods, and guava leaves

prolonged the periods required to reach the adult stage, but PCs of olive and mulberry leaves shortened it. Pupation percent was slightly affected when larvae were fed on a diet containing PCs of pomegranate peels, olive leaves, mulberry leaves, and acacia pods. Data demonstrated that the larval and pupal weights were remained unaffected throughout the various plant PCs treatments. Data also declared that plant PCs did not affect sex ratio, except in the case of mulberry PCs where it directed to the female side.

6. Effects on Adult Stage

Data clearly showed that the average of eggs number was significantly decreased in the case of pomegranate peel, acacia pod and guava leaf PCs, while insignificantly decreased in the case of olive and mulberry leaves PCs. In respect of egg hatchability percent, statistical analysis proved insignificant difference between treated and untreated insects. Generally, in all treatments, the produced females had low reproductive capacity than control. In comparison with untreated insects, the pink bollworm adult longevity was not affected after treatment with PCs of pomegranate peels, olive leaves, acacia pods, and guava leaves. While, feeding of larvae on diet containing mulberry leaf PCs significantly affected adult longevity significantly.

7. Histological Studies on the Effect of Plant PCs on Larval Midgut

The microscopically examination showed that the peritrophic membrane nearly disappear as a result of treatment with all plant PCs. Pomegranate peel and olive leaf PCs exhibited further changes in the gut where the epithelium cells is to some elongated, disorganized and disintegration. Whilst, in the case of guava PCs, these cells became thick. Lesions in the epithelial cell lining of the midgut were also observed. However, this effect differed dramatically between treatments since lesions in larvae fed pomegranate peel PCs were markedly numerous, and the basement membrane was occasionally exposed. Although these lesions were appeared in the other treatment, the basement membrane did not affect.

8. Effect of Plant PCs on Total Protein and Carbohydrate Contents

The obtained results indicated that total proteins content significantly increased when larvae were fed on diets containing plant PCs extracted with 80% acetone. On the other hand, results showed that the plant PCs did not significantly affect total carbohydrate contents.

9. Effect of Plant PCs on Certain Enzyme Activities

Data demonstrated that peroxidase activity of pink bollworm larvae was significantly increased relative to control in the case of PCs of olive leaves, acacia pods, and guava leaves. On the other hand, mulberry leaf PCs caused significant decreased in the enzyme activity while, pomegranate peel PCs did not lead to any significant change. With respect to β -glucosidase activity, high activity was observed in the case of pomegranate peel PCs. As results indicated, mulberry leaves and acacia pods showed the lowest enzyme activities. On the other hand, olive and guava leaf PCs did not significantly affect the enzyme activity. Feeding on diet containing LC₅₀ of guava leaf PCs caused a significant increase in the acid phosphatase activity. On the contrary, PCs of olive leaves and acacia pods caused significant decreases. With respect to PCs of pomegranate peels and mulberry leaves, insignificant increases were recorded. Results demonstrated that alkaline phosphatase activity was highly affected by the treatment with all plant PCs. α -Esterase activity of pink bollworm larvae was significantly inhibited only by olive leaf PCs treatment. Contrarily, PCs of each mulberry leaves and acacia pods increased the enzyme activity. Treatments with PCs of each of pomegranate peels and guava leaves did not cause significant variances relative to control. Date demonstrate that PCs of acacia pods caused significant decrease in β -esterase activity while, PCs of mulberry leaves caused significant increase. Insignificant values in enzyme activity were observed after treatment with PCs of pomegranate peels and leaves of olive and guava. Results revealed that mulberry leaf PCs significantly increased GST activity. Otherwise, treatment with olive leaf PCs significantly reduced GST activity. On the other hand, treatment with PCs of pomegranate peels, acacia pods, and guava leaves did not cause significant differences in the GST activity of pink bollworm larvae.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Phenolic Compounds in Some Selected	5
Plants	13
2. Extraction of Phenolic Compounds	19
	24
3.Insecticidal Activities of Some selected Plant	
Extracts	33
4. Insecticidal Activities of Some Selected Phenolic	
Compounds	34
5. Histopathological Effects of Phenolic Compounds on	
Insect's	
Midgut	
6. Biochemical Effects, Mode of Action, and Detoxification of	
Phenolic Compounds	
MATERIALS AND METHODS	47
1.	47
Materials	47
a-	47
Insects	47
b- Test	47
Materials	48
1.	49

Contents

Plants	49
2. Reference Phenolic	49
Compounds	49
C-	50
Chemicals	50
	50
2.	
Methods	50
	51
a- Insect	52
Rearing	53
b- Preparation of Plant	53
Materials	53
c- Determination of Moisture	54
Content	55
d- Preparation of Crude Phenolic	55
Extracts	55
e- Determination of Phenolic Compound	55
Contents	56
1.	56
Reagents	56
2.	56
Procedure	56
f- Toxicity Studies	56
g- Behavioral	57
Bioassay	57
1. Antifeedant	57
Bioassay	57
2. Contact	57

Bioassay	58
h- Biological	58
Bioassay	58
i- Histology of Larval	58
Midgut	59
j- Biochemical	
Studies	59
1. Experimental	59
Design	59
2. Preparation of Larval	59
Homogenate	60
a-	60
Procedure	60
3. Biochemical	60
Determinations	60
a- Assay of Peroxidase	61
Activity	61
1.	61
Reagents	61
2.	61
Procedure	61
3. Enzyme	62
Unit	62
b- Assay of β-Glucosidase	
Activity	
1.	
Reagents	
2.	
Procedure	

	3. Enzyme
Unit	
C-	Assay of Acid and Alkaline Phosphatase
	Activities
	1.
Reagents	
0	2.
Procedure	
	3. Enzyme
LInit	0. Enzyme
	Assay of Non-Specific Esterase
Activities	
D (1.
Reagents	-
	2.
Procedure	
	3. Preparation of Standard Curves of α - and β -
	Naphthol
	4. Enzyme
Unit	
e-	Assay of Glutathione S-Transferase
Activity	
	1.
Reagents	
0	2.
Procedure	
	3. Enzyme
Unit	0. LIIZYIIIC
Unit	

f- Determination of Total	
Proteins	
1.	
Reagents	
2.	
Procedure	
g- Determination of Total	
Carbohydrates	
1. Preparation of Acid	
Extract	
a-	
Reagents	
b-	
Procedure	
2. Phenol Sulfuric Acid	
Method	
a-	
Reagents	
b-	
Procedure	
k- Statistical	
Analysis	
RESULTS AND	٦٣
1. Extractability of Phenolic Compounds in Various Solvent	
systems	63
	63
a- Phenolic Compounds	65
Content	
b- Most Effective Solvent	

System	70
2. Toxicological	80
Studies	88
a- Insecticidal Activities of Plant PCs Extracted with 80%	89
Acetone	92
	94
b- Insecticidal Activities of Reference Phenolic	95
Compounds	95
3. Behavioral	97
Bioassay	98
a- Antifeedant	98
Bioassay	99
b- Contact	99
Bioassay	101
4. Biological	101
Studies	102
a- Effects of Plant PCs on Larval and Pupal	103
Stages	107
1. Larval and Pupal	
Periods	108
2. Pupation	108
Percent	110
3. Larval and Pupal	111
Weights	112
4. Sex	112
Ratio	116
b- Effects of Plant PCs on Adult	116
Stage	118
1. Egg Production and Fecundity Percent	118

	120
2. Hatchability of Deposited Eggs and Viability	
Percent	
3. Reproductive	
Capacity	
4. Adult Longevity	
5. Histological Studies on the Effect of Plant PCs on Larval	
Midgut.	
6. Biochemical	
Studies	
a- Effect of Plant PCs on Total Protein and	
Carbohydrate Contents	
1. Total Proteins Content	
2. Total carbohydrates	
Content	
b Effect of Plant PCs on Certain Enzyme	
Activities	
1.	
Peroxidase	
2. β-	
Glucosidase	
3. Acid Phosphatase	
(ACP)	
4. Alkaline Phosphatase	
(ALP)	
5. α-	
Esterase	

6. β-	
Esterase	
7. Glutathione S-	
Transferase	
SUMMARY	125
REFERENCES	133
ARABIC SUMMARY	