ABSTRACT

Two identical gable-even-span greenhouses were designed, constructed, and installed at EL-Sabahia Horticultural Research station, Alexandria Governorate. They were utilized to grow and produce cucumber crop during summer season of 2005. Each greenhouse was equipped by 72 pots as a cultivation system for protected cropping, drip irrigation system for watering pots of crop, evaporative cooling system using two different cooling pads (one of locally available materials, and the other of cross-fluted cellulose pads) for removing the exceeding heat, and microclimate control board for operating the evaporative cooling system (extracting fan and water pump). A microcomputer based data-logger system was used to read, display, and record (from sensors) various temperatures, solar radiation, and air relative humidity.

The two different cooling pad materials were functioned to compare weather the two materials differed significantly in the cooling system effectivness. The effectivness of evaporative cooling which used two different cooling media A (from locally available materials) and B (from cross-fluted cellulose pads) was 69.25% and 74.71%, respectively. Consequentially, the cooling media B was more efficient than the cooling media A by 5.56%. The ambient air temperatures surrounding the cucumber plants were uniform inside the two greenhouses, due to the inside air was continuously moved by extracting fans. The temperature of the cucumber plant leaves during the majority of day light time was lower than the ambient air temperature inside the greenhouses

which prevented occurrence of plant thermal stress and consequentially reduced the risk of plant water stress and fungal diseases.

Due to control and maintain the microclimatic conditions inside the two greenhouses at desired level particularly during day light in hot summer season, the total fresh yield of cucumber crop for greenhouse A and greenhouse B was 259.2 and 298.7 kg, respectively. There for, greenhouse B was found to be on average 39.5 kg (15.24%) more productive than greenhouse A.

Ultimately, to improve the cooling performance and minimize the total costs of cooling media A (from locally available materials), the number of air stream holes should be increased by 25% to provide and maintain the same rate of air flows as the cooling media B (from cross-fluted cellulose pads). As a result of this points the electrical power consumed to operate the extracting fan will be reduced, resulting in decrease the total costs.

CONTENTS

	Page
LIST OF TABLES	
LIST OF FIGURES	
ACKNOWLEDGMENTS	
ABSTRACT	
1 – INTRODUCTION	
2 - REVIEW OF LITERATURE	
2 .1 Solar Radiation	
2.1.1 The solar constant	
2.1.2 The spectrum of the sun	6
2.1.3 The position of the sun	10
2.1.4 Hourly average total solar radiation flux i	nciden
on a horizontal, tilted, and vertical surfaces	14
2.2 The Greenhouses	18
2.2.1 Greenhouse structures	19
2.2.2 Greenhouse shape	27
2.2.3 Greenhouse orientation	30
2.2.4 Greenhouse covering materials	35
2.2.5 Greenhouse ventilation and cooling	44
2.2.6 Greenhouse microclimate control	64
2.3 Energy Balance	78

3 MATERIALS AND METHODS	92
3.1 Greenhouses Design and Construction	
3.1.1 Experimental gable-even-span greenhouses	
3.1.2 Covering system of greenhouses	
3.1.3 Ventilating and cooling systems	96
3.2 Vegetative and watering systems	103
3.2.1 Vegetating system (Pots system)	103
3.2.2 Watering(Irrigation) system	105
3.2.3 Germination and seedling operations:	106
3.3 Instrumentation	106
3.4 Total Costs of Cooling Media	
3.5 Greenhouse Energy Balance During Daylight	
4- RESULTS AND DISCUSSION	
4.1 Effect of Outside Climatic Circumstances on Inside	
Microclimate of the Polyethylene Greenhouse.	124
Solar radiation flux incident outside and inside	
the greenhouse	124
Ambient air temperatures outside and inside	
the greenhouses	127
Air relative humidity outside and inside	
the greenhouses. Useful heat gain to storage	138
Effectiveness of Two Different Cooling Pads	143
4.2.1 The total costs of operating media	154

4.3 Model Computation of Energy Balance During Daylight	155
4.3.1 Solar energy available inside the greenhouses (Q1)	155
4.3.2 Absorbed solar energy by the floor surface area (C	(g) 156
4.3.3 Solar energy consumed in evapotranspiration proc	ess
(Q_{ev})	160
Heat energy losses from the greenhouse (Qloss)	163
Effect of Evaporative Cooling on Growth and Productivity	
of Cucumber Crop	168
5 - SUMMARY AND CONCLUSIONS	176
6 - REFERENCES	187
APPENDIX A	208
APPENDIX B	212
APPENDIX C	214
ARABIC SUMMARY	