Name of Candi	date: Naglaa Ezzat Abou Samm	ra Degree : M.Sc.	
Title of Thesis:	Effects of Interaction Between S Rats.	Some Minerals and Lipids In	
Supervisors:	Dr. Gamal S. El-Baroty, Dr. Ahmed El. S. Basuony	Magdy A. Shallan and Dr.	
Department:	Agricultural Biochemistry		
Branch:	Agricultural Biochemistry	Approval: \ \2008	
ABSTRACT			

Interactions of dietary nutrient are important factors to consider in the study. The aim of this study was to investigate the effect of dietary interacting among iron (Fe), manganese (Mn) and two fatty types on growth parameter (body weight gain, food intake, food efficiency ratio and orgain weight), lipid characterization (as mesured by TL, TG, T-Cho, HDL and LDL) enzyme activities (CAT, POX and SOD), mineral status (as measured with Fe and Mn levels), lipid peroxidation (as measured by TBARs) and protein. Male rats (n =6) were used in 3 x 3 x 2 factorial design and fed standard basal diet containing dietary Fe (10, 35 and 250 mg/kg), Mn (1, 45 and 250 mg/kg) and either soybean or corn oil at 15% for 8 weeks. The results of the present work can be summarized as follows:-

Body weights did not differ throughout the experiment among rats fed the differents diets. The body weight gain, food intake, food efficiency ratio and orgain weight of all rats groups were not significantly different. Thus, these parameters were not affected by the levels of dietary iron and manganese or the type of oils. Also, the Anova analysis did not show relationship between the increase of rat organs (heart, lung, kidney and spleen) and the dietry Fe, Mn and oil types. The concentration of Fe or Mn in plasma was increased through the experiment period among rat's feddifferent diets. The plasma Fe and Mn contents were gradually increased by feeding rats at higher levels of both minerals statistical analysis, showed that the plasma Fe and Mn was positively associated with Fe and Mn levels in diets.

As intake of Fe and Mn increased plasma, HDL was increased. Incontrast, concentration of plasma TL, LDLand T-Chol were decreased throughout experimental periods. In over all, the changes in TL content was affected with the time, Fe-dose, interaction between Fe and Mn and interaction among time, Fe and Mn. However, the changes in TL were altered throughout experimental periods, and these change in TL values was differ from week to another.

Rats fed high iron diets had higher concentration of lipid peroxidation products in plasma (thiobarbituric acid – reactive substances, TBRAs). TBRAs valus in plasma was increased gradually with the time. The rats fed diets contained Mn, Fe with soybean and corn oils leading to increase antioxidant enzyme activity including: SOD, CAT and POX in plasma throughout experimental period, The ANOVA analysis revealed that activities of SOD, CAT and POX were significantly affected by dietary Fe and Mn.From overall results it could be concluded that diets containing Fe at adequt level (35 mg / kg diet) or Mn could be save for supplementation of some foods to preventy my deficiency signs caused by both elementshave been found.

Key words: Iron, Manganese, Chemical Studies, Biological Studies, Rat

الدرجة: الماجستير	ا سم الطالب: نجلاء عـزت ابوسمـرة
للصر و المواد الدهنية على فئران التجارب	عنوان الرسالة: تأثير التداخل بين بعض الع
بد علي الباروطي	المشرفون : الأستاذ الدكتور : جمال سب
, عبد العليم شعلان	الأستاذ الدكتور : مجدى
مید بسیونی	الدكتور : ااحمد س
حيوية تا ريخ منح الدرجة: / /	قسم: الكيمياء الحيوية فرع: الكيمياء ال
خلص العربي	المست

تعتبر دراسة تداخل العناصر من العوامل الهامة و المؤثرة فى حالة المحافظة على الصحة العامة فيلعب الغذاء المتوازن دور هام فى الوقاية من امراض سوء التغذية والتى تشمل نقص أو زيادة عنصر من المواد الغذائية و التى تؤثر على صحة و حياة الفرد فأحيانا نقص احد العناصر يؤدى الى سوء التغذية بسبب نقصه فى كمية الغذاء و احيانا الأفراط فى تناول العناصر الغذائية يؤدى الى ظهور مشاكل صحية قد تمثل خطورة على حياة الفرد.

تهدف هذه الدراسة الى تقييم تأثير تداخل عنصرى الحديد و المنجنيز و نوعان مختلفان من الزيوت (زيت الصويا وزيت الذرة) على مستوى اللبيدات والمعادن على ذكور فئران التجاربحيث أجريت تجربة بيولوجية لدراسة مدى تأثير تداخل هذه العناصر مع اللبيدات على البلازما وكبد الفئران تم استخدم عدد 100 من الفئران و قسمت الى مجموعتين مجموعة تحتوى على تركيزات مختلفة من الحديد و المنجنيز مع زيت الذرة بتركيز 15% و المجموعة الأخرى تحتوى على 3تركيزات مختلفة من الحديد و المنجنيز مع زيت فول الصويا بتركيز 15% و كانت التركيزات المستخد مة لعنصر الحديدهى (10- 35-200 مجم/كجم) والتركيزات المستخدمة لعنصر المنجنيز هى (1-55-200 ملجم/كجم) و قد استمرت التجربة لمدة 60يوما و قد تم أخذ عينات من الدم خلال فترة التجربة مع تقدير وزن الفئران لمتابعة نموها كل أسبوعين و فى نهاية التجربة تم ذبح الفئران أخذ عينات من الدم خلال فترة التجربة مع تقدير وزن الفئران لمتابعة نموها كل أسبوعين و فى نهاية التجربة تم ذبح الفئران وأخذت الاعضاء المختلفة (الكبد-الطحال-القلب-الكلية) و معرفة الأوزان المختلفة لهذه الاعضاء. وقد تم قدير قياسات النمو الفئران وأخذت الاعضاء المختلفة (الكبد-الطحال-القلب-الكلية) و معرفة الأوزان المختلفة لهذه الاعضاء. وقد تم تقدير و الكتاليز والنوبر اوكسيد دسميوتيز) وتم تقدير محتوي المواد اللبيدية بالدم وانسجة الكبد . وقد تم تقدير البيروكسيديز و الكتاليز والسوبر اوكسيد دسميوتيز) وتم تقدير محتوي المواد البيدية بالدم وانسجة الكبد . وقد تم تقدير الكوليستيرول والبيدات الكلية والسوبر وكميد دسميوتيز) وتم تقدير محتوي المواد البيدية بالدم وانسجة الكبد . وقد تم تقدير الكوليستيرول والبيدات الكلية والسوبر وكميد دسميوتيز) وتم تقدير محتوي المواد البيدية بالدم وانسجة الكبد . وقد تم تقدير الكوليستيرول والبيدات الكلية والسوبر وكميد دسميوتيز) وتم تقدير محتوي المواد (TBARS). وتقدير البروتين وصورة البروتينات المختلفة و من خلال التجربة كانت اهم التنتائج ما يلى:

– ملاحظة حدوث زيادة في اوزان فئران التجارب خلال التجربة مع حدوث زيادة في اوزان الفئران المغذاة على زيت فول الصويا عن الفئران المغذاة على زيت الذرة

– تم ملاحظة زيادة نسبة عنصري الحديد والنجنيز في بلازما الدم في مجاميع الغئران المغذاة على العلائق المختلفة

–عدم حدوث اى تغير في نسب البروتينات في حالة المعاملة بكلا العنصرين

وجد ان نتيجة المعاملة باي من العنصرين في وجود كلا من انواع الزيوت المختلفة ادى الي زيادة نشاط الانزيمات المضادة للاكسدة مثل الكتاليز ولبيروكسيبديز

وجد ان بزيادة تركيز كلا من العنصرين في العليقة يؤدي ذلك الي نقص في مستوي اللبيدات الكلية و الكوليسترول و
الجلسريدات الكلية و على العكس زادة نسبة رقم الثيوبارباتيوريك

– من تلك النتائج يمكن القول بان استخدام علائق تحتوي على تركيز ات متوسطة 35 ملجم/كجم عليقة من الحديد و 45 ملجم / كجم عليفة من النجنيز تعتبر امنة تماما في الاستخدام من الناحية الغذائية ومكملة في حالة نقص اي من العنصرين

الكلمات الدالة: الحديد - المنجنيز - در اسات كيميائية - در اسات بيولوجيق - فنر ان التجارب

CONTENTS

.

Þ.

1

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Iron	3
a. The risks of excessive iron storage	4
b. Catalysis of hydroxyl radical production	5
c. The initiation of lipid peroxidation	6
d. Biological function of iron	7
e. Heme proteins	10
f. Single iron containing metalloenzymes	11
g. Protein with oxygen- bridged iron	11
h. Proteins with iron-sulfur centers	12
1. Iron excess	13
J. Iron deficiency	15
k. Liabilities of iron deficiency	16
2. Effect of iron on metabolism	1/
3. Effect of iron on lipid composition and metals status	20
4. Effect of iron on lipid peroxidations	27
5. Manganese	33
6. Effect of manganese on rats blochemical	33
parameters	25
a. Elizyille	35
b. Willeral contents and lipid prome	39
d. Effect of manages on linid constitution	41
7. Iron and manganese Interaction	42
A TEDIAIS AND METHODS	44 50
1 Mataviala	50
	50 50
a. Olis	50
0. Annihilais	50
d. Salvants and chamicals	50
2 Nutrition experiments	51
2. Nutrition experiments	51
A Proparation of honatic homogenets	53 53
5 Biochemical analysis and anzyma assays	55 54
J. DIVENTINAL ANALYSIS AND CHZYMC ASSAYS	J -

a. Determination of total lipids in plasma	54	
b. Determination of plasma total cholesterol		
c. Determination of high density lipoprotein-		
cholesterol	56	
d. Determination of Low density lipoprotein-cholesterol	57	
e. Determination of plasma triglycerides	57	
f. Determination of lipid peroxidation products		
6. Determination of total protein in plasma and	59	
liver		
7. Determination of enzymes specific activities		
a. Antioxidant enzymes	60	
1. Catalase	60	
2. Peroxidase	62	
3. Measurement of superoxide dismutase	63	
8. Determination of minerals contents	65	
9. Determination of Iron in plasma		
10. Fractionation of protein		
11. Isolation and extraction of fatty acid	71	
a. Methylation of fatty acids	72	
b. Identification of fatty acid methyl esters	72	
c. Analysis of fatty acid in rat dietary diets	73	
12. Statistical analysis	73	
RESULTS AND DISCUSSION	74	
SUMMARY		
REFERENCES	123	

Ţ

Ì