ABSTRACT

The present study was carried out to investigate the efficiency of some chemical and natural substances for heavy metals adsorption.

Ethylene di amine tetra acetic acid as a chemical chelator and both rice husk and orange peel as natural chelators, were used as chelators for 2 mg/l and 12 mg/l Cu and Pb aqueous solutions, respectively.

The 1^{st} (pilot) experiment along one month period had been carried out to determine the optimum concentrations of the investigated materials which were used during the 2^{nd} experiment. Concentrations of 0.007, 0.5 and 0.5 g/l for 2NaEDTA, rice husk and orange peel respectively, were chosen for the 2^{nd} experiment.

Experimental design

The 2^{nd} (main) experiment, carried out along a period of two months, where *Oreochromis niloticus* fingerlings (37.5 ± 2.5 gm) were divided into non-polluted and polluted groups. The non-polluted group subdivided into 4 subgroups: control, 0.007 2NaEDTA, 0.5 g rice husk/l and 0.5 g orange peel/l. The polluted group divided into 2 main subgroups: Cu-polluted water and Pb-polluted water. Cu-polluted water in turn subdivided into 4 subgroups, one of them received 2 mg Cu/l and the other 3 sub groups received in addition to copper, 0.007, 0.5 and 0.5 g/l of 2NaEDTA, rice husk and orange peel, respectively. Pb-polluted water main sub group subdivided into 4 subgroups, one of them received 12 mg Pb/l and the other 3 subgroups received in addition to lead, 0.007, 0.5 and 0.5 g/l of 2NaEDTA, rice husk and orange peel, respectively. All treatments represented in 2 replicates with 12 fish for each aquarium ($40 \times 50 \times 50$ cm). Results obtained at the end of the study were as follow:

Residual analysis Water residues

The addition of EDTA, rice husk or orange peel to the Cupolluted water reduced its concentration in water significantly from a value of 0.65 ± 0.05 mg/l to values of 0.00 ± 0.00 , 0.07 ± 0.01 and 0.1 ± 0.01 mg/l at the end of the study, respectively. The mean concentration of water lead in 12 mg/l lead-polluted water was 5.055 ± 0.685 mg/l at the end of the study period (after 60 days). Its average mean concentrations in treatments received EDTA, rice husk or orange peel were 0.01 ± 0.00 mg/l for all of them at the end of the study period (after 60 days).

Residual analysis in muscles and selected organs

Residues of both copper and lead in muscles, gills, livers and kidneys recorded at the end of the study period (after 60 days) were significantly higher in treatments exposed to copper or lead than their values in control, however, the addition of EDTA, rice husk or orange peel as adsorbing materials significantly reduced both metals concentrations in muscles and different selected organs at the end of the study period (60 days).

Biochemical investigations

Some biochemical parameters were measured alongside the study period to investigate the influence of treating polluted water with the investigated materials on their biochemical equilibrium. Obtained results indicated that serum glucose, serum total protein and serum transaminases values were significantly increased in fish raised in either Cu or Pb polluted water. Serum total lipid values were significally decreased. As a result of applying any of the investigated materials (EDTA, rice husk and orange peel), the values of the tested biochemical parameters returned to their normal values recorded in control fish raised in non-polluted water.

Histological examination

At the end of the study, gills and livers obtained for histological examination. Histological sections of gills revealed that exposure to copper or lead caused a sever damage to it. Gills of fingerlings raised in either 2 mg Cu/l or 12 mg Pb/l polluted water showed a sever hyperplasia, sloughing of secondary lamellae and sever congestion of blood vessels. The application of the tested adsorbing materials reduced the damage occurred in fingerlings gills. Histological sections of liver samples also showed sever damage in fish raised in either copper or lead polluted water. Liver of fingerlings raised in 2 mg Cu/l polluted water showed sever congestion of blood vessels and inactivation of pancreatic acin. Congestion, hyperplasia of epithelial cell, lining of bile ductules and dissociation of pancreatic acins were the sign of damage occurred in liver of fingerlings raised in 12 mg Pb/l polluted water. Livers of fish that received adsorbing materials, showed no affective lesions.

The most important results that could be concluded from the present study, that the application of 2NaEDTA, rice husk or orange peel greatly reduced the concentrations of copper and lead in water, and consequently in muscles, gills, livers and kidneys of *O. niloticus* fingerlings, hence the biochemical parameters had been returned near to its normal values, as well as histological sections reflected normal images of gills and livers.

CONTENT

	Page
INTRODUCTION	1
AIMS OF THE WORK	4
REVIEW OF LITERATURE	5
Environmental impact of heavy metals	5
Some heavy metals sources	8
Copper occurrence and importance	9
Copper toxicity	10
Copper LC ₅₀ to <i>O. niloticus</i> \ldots \ldots	12
Bioaccumulation of copper in fish tissues	12
Lead occurrence and sources	١٤
Lead toxicity and LC ₅₀	١٦
Bioaccumulation of lead in fish tissues	١٨
Water quality parameters and their effect on heavy metals toxicity	١٩
Effect of heavy metals on physiological and biochemical parameters.	۲ ۱
Effect of heavy metals on histological examination	۲۷

Alternatives for heavy metals removal	۳.
Low-cost adsorbents	٣٦
Chemical chelators	٣٧
Natural chelators	۳۸
Adsorption by agricultural by-products	۳۸
Orange peel	٣٩
Materials and Methods	٤.
Experimental design	٤٢
The $1^{\underline{st}}$ (pilot) experiment	٤٢
The $2^{\underline{nd}}$ (main) experiment	٤٣
Residual analysis	٤٤
Biochemical analysis	٤٦
Histopathological studies	٤٧
Statistical analysis of the results	٤٨
RESULTS AND DISCUSSION	٤٩
The 1 st (pilot) experiment	٤٩

Water residual analysis	٤٩
Residual analysis of muscles and selected organs	٦٦
Copper in muscles	٧.
Lead in muscles	۷۱
Copper in gills	۷١
Lead in gills	٧٥
Copper in liver	٧٥
Lead in liver	٧٩
Copper in kidney	٨.
Lead in kidney	٨٤
Biochemical investigations	Λ٥
Serum glucose	Λ٥
Serum total protein	٨٩
Serum ASAT & ALAT	٩ ٤
Serum total lipids	١٠٢
Histopathological investigation	۱.۷

CONCLUSION AND RECOMMENDATION	117
SUMMARY)) Y
REFERENCES	١٢٦
ARABIC SUMMARY	