Name of Candidate: Moshera S. E. SadekDegree: Ph.DTitle of Thesis: Molecular genetic studies on maizeSupervisors: Prof. Dr. Ebtissam H. A. Hussein
Prof Dr. Hanaiya A. El-ItribyDepartment: GeneticsBranch: GeneticsApproval:/2006

ABSTRACT

A half diallel cross was made using six inbred lines *i.e.*, Gm 2, Gm 7, Gm 18, Gm 30, Sd 7 and Sd 63. All F₁'s and their parents were evaluated for yield and its components in replicated field trials at four locations; Gemmeiza, Sakha, Sids and Mallawy in the two respective seasons, 2003 and 2004. Diallel analysis Griffing's Model I Method II were used to estimate general (GCA) and specific (SCA) combining ability. Mid-parent and high-parent heterosis were calculated. The results showed that the interaction between genotypes x locations, general and specific combining ability were highly significant for all studied traits. The SCA played the most important role in the inheritance of most studied trait. Each of the parental inbred lines Gm 30 and Sd 7 revealed the better combining ability with the other parents. The single crosses Gm 30 x Sd 63 and Sd 7 x Sd 63 were the best crosses with the highest yield productivity 36.17 and 35.62 ardab/feddan, respectively. F₁ crosses expressed highly significant values for grain yield heterosis ranged from 257.94 to 397.05 and 209.96 to 351.80 % for mid-parent and highparent heterosis, respectively. The parental inbred lines were surveyed for DNA polymorphism using 28 RAPD primers, 21 SSR primer pairs and 10 AFLP primer combinations. The ratios of polymorphism were 82%, 98.48% and 79.20% for RAPDs, SSRs and AFLPs, respectively. All marker systems were able to uniquely fingerprint each of the inbred lines. Genetic similarity was determined using Dice's similarity coefficient, and a dendrogram was constructed for each marker type by UPGMA. The combined dendrogram based on the three types of markers, grouped the six maize inbred lines in complete accordance to their genetic background. The AFLP technique exhibited the highest effective number of alleles (408.36), the highest marker index (25.47) and the highest effective multiplex ratio (79.60) compared to RAPD and SSR. The genetic distances (GDs) based on molecular data were partitioned into general (GGD) and specific (SGD) components. Correlations of GD and SGD with F_1 grain yield, specific combining ability (SCA), mid-parent (MPH) and high-parent heterosis (HPH) were negative and non significant, however, the correlation of GD and SGDs based on AFLP and combined data revealed low positive association. These results pointed to AFLP analysis and/or the use of several types of molecular markers provide a powerful tool for assessing genetic variation and assigning maize inbred lines into different heterotic groups. Consequently, they are considered as valuable tools to field trials complementation for identifying groups with satisfactory heterotic response, thus assisting maize breeders to predict combinations of lines that result in high-yielding, single-cross hybrids.

Key words: Maize (*Zea mays*), molecular markers, diallel cross, correlation coefficients, combining ability, heterosis.

Table of Contents

1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Diallel Analysis.	4
2.1.1. Combining ability	4
2.1.2. Heterosis	14
2.2. Genetic Relationship Based on Molecular Markers	19
2.2.1. Random amplified polymorphic DNA (RAPD)	20
2.2.2. Simple sequences repeat (SSR)	26
2.2.3. Amplified fragment length polymorphism (AFLP)	35
2.3. Genetic Diversity and Hybrid Performance	43
3. MATERIALS AND METHODS	59
3.1. Plant Materials	59
3.2. Methods	59
3.2.1. Field experiments	59
3.2.1.1. Evaluation of the inbred lines and their crosses	60
3.2.1.2. Statistical analysis	61
I. Combining ability	62
II. Heterosis	64
3.2.2. Molecular analysis	64
3.2.2.1. Extraction of DNA	65
3.2.2.2. Estimation of DNA Quantity and quality	65
I. Spectrophotometric Method	65
II. Visual method	66
3.2.3. Detection of polymorphism among the parental inbred lines.	66
3.2.3.1. Random Amplified Polymorphic DNA (RAPD) Assay	66
3.2.3.1.1. RAPD-PCR Reactions	66
3.2.3.1.2. Thermocycling Profile and Detection of PCR products	67
3.2.3.2. Simple Sequences Repeats (SSRs) Assay	68

i

3.2.3.2.1. SSR-PCR Reaction and Thermocycling Profile	
3.2.3.2.2. Detection of SSR products	
I. Agarose gel	
II. Polyacrylamide gel	
3.2.3.3. Amplified Fragment Length Polymorphism (AFLP) Assay.	
3.2.3.3.1. AFLP Reactions	
A. Restriction digestion of Genomic DNA	
B. Adapters Ligation Reaction	
C. Pre-selective PCR Amplification Reactions	
D. Selective Amplification PCR Reactions	
3.2.3.3.2. Detection of AFLP products	
3.2.3.3.2.1. Polyacrylamide denaturing sequencing gel preparation and electrophoresis	
3.2.3.3.2.2. Gel staining using silver nitrate	
3.2.4. Data Analysis	
3.2.5. Solutions and buffers	
4. RESULTS AND DISCUSSION	
4.1. Evaluation of the maize genotypes	
4.1.1. Analysis of variance	
A. Analysis of variance for locations, genotypes and interaction.	
B. Analysis of variance for GCA and SCA	
4.1.2. Mean performances of genotypes	
4.1.3. Combining ability	
A. General combining ability	
B. Specific combining ability	
4.1.4. Heterotic effects	
A. Mid-parents heterosis (MPH)	
B. High parent heterosis (HPH)	
4.2. Genetic relationships as revealed by molecular markers	
4.2.1. Random amplified polymorphic DNA	
4.2.1.1. Polymorphism detected by RAPD markers	

ii

42.1.2. Genetic relationships among the six maize inbred lines	111
4.2.1.3. Cluster analysis of the six maize inbred lines based on RAPD data	111
4.2.1.4. Unique markers as revealed by RAPD	113
4.2.2- Simple sequences repeat (SSR)	116
4.2.2.1. Levels of polymorphism as revealed by SSR data	116
4.2.2.2. Genetic relationships as revealed by SSR data	119
SSR data	120
4.2.2.4. Unique markers as revealed by SSR	122
4.2.3. Amplified fragment length polymorphic	123
4.2.3.1. Levels of polymorphism as revealed by AFLP markers	123
4.2.3.2. Genetic relationships as revealed by AFLP markers	126
4.2.3.3. Cluster analysis of the six maize inbred lines based on AFLP data	128
4.2.3.4 Unique markers as revealed by AFLP	129
4.2.4. Genetic relationship as revealed by the combined data of RAPD. SSR and AFLP	132
4.2.5. Cluster analysis as revealed by the combined data of RAPD, SSR and AFLP	135
4.2.6. Comparisons among the efficiency of RAPD, SSR and	
AFLP markers in the maize genome analysis 4.3. Molecular markers as predictors of combining ability and hybrid	136
4.3.1. Correlation between genetic distances (GDs) and hybrid	142
performance	142
4.3.2. Correlation between specific genetic distance (SGD) and hybrid performance	148
5. SUMMARY	151
6. REFERENCE	159
7. APPENDIX	
8. ARABIC SUMMARY	

iii