ABSTRACT

Seham Yehia Gebreil Salleh, Production of Dietary Fiber Gel from Some Cereal Wastes For Preparing Reduced Calorie Foods. Unpublished Master of Science Thesis, Department of Food Science, Faculty of Agricultural, Ain Shams University, 2008.

In this study, fiber gel prepared from some cereal wastes (i.e. rice straw, corn bran, corn cobs and barley hulls) were evaluated for using as fat replacer in the production of low-caloric cookies and beef burger. The effect of different replacement levels on physical measurements, chemical composition and sensory evaluation of the resultant low-caloric food products were also studied.

Results showed that different sources of fiber gel had high crude fiber and total carbohydrate content and low fat and protein contents. The caloric values for rice straw, corn bran, corn cobs and barley hulls gels were 175.13, 312.32, 223.76 and 209.09 kcal/100g wet basis respectively.

An increase in total dietary fiber, insoluble dietary fiber, cellulose and hemicellulose and a decrease in soluble dietary fiber and lignin were obtained when prepared fiber gel from cereal wastes. Different fiber gels had higher water holding and oil absorption capacity values than the corresponding cereal wastes .Scanning electron microscope was also used to examine the morphological alteration of different cereal wastes and their fiber gels.

Cookies with fat replaced up to 40 and 60% by weight of different fiber gels possessed overall acceptability similar to that of the control cookie. Meanwhile increasing of fiber gel level caused to decrease in spread ratio and increases in specific volume and hardness of low-caloric cookies. Replacing 60% of fat with different types of fiber gel significantly reduced caloric values of cookies by 23% to that of control sample. Also, cookies prepared with 60% of fiber gel had crude fiber contents as 2.05 to 2.42 times as mush as that of control.

Adding of different sources and levels of fiber gel (1: 1, 1: 2 and 1:3 of fat: fiber gel) was found to significantly effects on certain quality parameters of the beef burger. Fiber gel addition was found to be more effective for improving the reduction of cooking yield, diameter and thickness of beef burger. Also, control sample and beef burgers formulated with 1: 1 and 1:2 of fat to fiber gel had the acceptable products recorded the highest overall acceptability scores.

Therefore, replacing fat with the suitable levels of different fiber gel can be used for production of low-caloric high dietary fiber food products.

Consequently, these low-caloric and high dietary fiber gel food products could be used to reduce the risk of chronic disease such as coronary heart disease, some types of cancer and obesity, and lowering of serum cholesterol.

Key words: Cereal wastes, Dietary fiber, Fiber gel, Rice straw, Corn bran, Corn cobs, Barley hulls, Crude fiber, Water holding capacity, Oil absorption capacity, Scanning Electron Microscopy, fat replacer, Cookies, beef burger, low caloric food products.

LIST OF CONTENTS

No		Page
	LIST OF TABBLES	V
	LIST OF FIGURES	ix
	LIST OF APPRIVIATIONS	xi
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	5
2.1.	Agricultural and cereal wastes	5
2.2.	Dietary fiber	9
2.2.1.	Definition of dietary fiber	9
2.2.2.	Chemical composition of dietary fiber	10
2.2.3.	Physiological properties of dietary fiber	14
2.3.	Dietary fiber gels	17
2.3.1.	Preparation of Dietary fiber gels	17
2.3.2.	Physicochemical properties of dietary fiber gel	18
2.4.	Reduced -fat/calorie food products	22
2.4.1.	Fat replacers	23
2.4.2.	Use of fiber gel as fat replacer in reduced-calorie foods	25
2.4.2.1.	Bakery products	27
2.4.2.2.	Meat products	32
3.	MATERIALS AND METHODS	35
3.1.	Materials	35
3.1.1.	Raw materials	35
3.1.2.	Chemicals	35
3.1.3.	Cookies ingredients:	35
3.1.4.	Beef burger ingredient:	35
3.2.	Methods:	35
3.2.1.	Experimental treatments and technological processing	35
3.2.1.1.	Preparation of dietary fiber gels:	35
3.2.1.2.	Cookies processing:	37
3.2.1.3.	Beef burger processing:	38

3.2.2.	Analytical analysis:	38
3.2.2.1.	Cereal wastes and fiber gel analysis:	38
3.2.2.1.1.	Proximate chemical composition:	38
3.2.2.1.2.	Crude fiber content:	38
3.2.2.1.3.	Total dietary fibers:	39
3.2.2.1.4.	Soluble and insoluble dietary fiber gel:	40
3.2.2.1.5.	Hemicellulose and cellulose fractions (Holocellulose)	41
3.2.2.1.6.	Lignin	41
3.2.2.1.7.	Water holding and oil absorption capacity:	41
3.2.2.1.8.	Scanning electron micrographs (SEM):	42
3.2.2.2.	Cookies analysis:	42
3.2.2.1.	Proximate chemical composition:	42
3.2.2.2.2.	Fat analysis:	42
3.2.2.2.1.	Thiobarbaturic acid value (TBA):	43
3.2.2.2.2.2.	Acid value (A.V):	43
3.2.2.2.3.	Peroxide value (P.V):	43
3.2.2.3.	Physical properties:	44
3.2.2.3.1.	Diameter or width of cookies	44
3.2.2.3.2.	Thickness (T) or height of cookies	44
3.2.2.3.3.	Spread ratio	44
3.2.2.3.4.	Weight, volume and specific volume	44
3.2.2.3.5.	Hardness	44
3.2.2.3.6.	Caloric value	45
3.2.2.4.	Sensory evaluation	45
3.2.2.3.	Beef burger analysis	45
3.2.2.3.1.	Proximate chemical composition	45
3.2.2.3.2.	Thiobarbituric acid value (TBA)	46
3.2.2.3.3.	Moisture and fat retention	46
3.2.2.3.4.	Physical properties	46
3.2.2.3.4.1.	The pH values	46
3.2.2.3.4.2.	Water holding capacity (WHC) and plasticity	47

3.2.2.3.4.3.	Shrinkage	47
3.2.2.3.4.4.	Hardness	47
3.2.2.3.4.5.	Caloric value	47
3.2.2.3.4.6.	Thaw drip	48
3.2.2.3.4.7.	Chang of burger diameter and thickness	48
3.2.2.3.4.8.	Cooking yield	48
3.2.2.3.5.	Sensory evaluation:	49
3.2.3	Statistical analysis:	49
4.	RESULTS AND DISCUSSION	50
4.1.	Physicochemical properties of cereal wastes and their	
	fiber gel	50
4.1.1.	Proximate chemical composition of tested cereal wastes	50
4.1.2.	Yields of dietary fiber gel from tested cereal wastes.	51
4.1.3.	Proximate chemical composition and caloric value of	
	different dietary fiber gels	52
4.1.4.	Dietary fiber fractions	54
4.1.5.	Water holding capacity	56
4.1.6.	Oil absorption capacity (OAC)	58
4.1.7.	Scanning electron microscope (SEM)	58
4.2.	Use of dietary fiber gel in the production of low-caloric	
	cookies	62
4.2.1.	Chemical analysis and caloric value of cookies:	62
4.2.2.	Physical properties of cookies:	69
4.2.2.1.	Volume, weight, diameter and thickness of cookies.	69
4.2.2.2.	Hardness of cookies	75
4.2.3.	Sensory evaluation of cookies:	76
4.2.4.	Effect of storage on quality attributes of low-caloric cookie	76
4.2.4.1.	Sensory evaluation of cookies during storage:	81
4.2.4.2.	Chemical analysis of fat extracted from cookies samples	88
4.2.4.2.1.	Thiobarbituric acid values (TBA).	88
4.2.4.2.2.	Acid value (A.V)	88

6.	REFERANCES	149
5.	SUMMARY AND CONCLUSION	139
4.3.4.	Sensory evaluation of cooked beef burger:	130
4.3.3.2.	Thiobarbituric acid (TBA)	127
4.3.3.1.	pH values.	125
4.3.3.	Beef burger shelf-life	125
4.3.2.2.6.	Moisture and fat retentions:	121
4.3.2.2.5.	Cooking yield	121
4.3.2.2.4.	Hardness of cooked beef burger	118
4.3.2.2.3.	Shrinkage	118
4.3.2.2.2.	Thickness change	115
4.3.2.2.1.	Diameter change	115
4.3.2.2.	Cooked beef burger	115
4.3.2.1.4.	Plasticity	108
4.3.2.1.3.	Water holding capacity (WHC):	108
4.3.2.1.2.	Hardness	105
4.3.2.1.1.	Thaw drip	105
4.3.2.1.	Raw beef burger	105
4.3.2.	Quality characteristics of low-caloric beef burger	103
4.3.1.	Chemical analysis and caloric value of raw beef burger	100
	burger	100
4.3.	Use of dietary fiber gel in the production of low-caloric	ł
4.2.4.4.	Hardness of cookies	98
4.2.4.3.	Moisture content of cookies samples during storage:	93
4.2.4.2.3	Peroxide value (P.V)	93

LIST OF APPRIVIATIONS

%	Percentage
°C	Centigrade degree
A.V	Acid value
AACC	American Association of Cereal Chemists
ANOVA	Analysis of Variance
AOAC	Association of Official Agricultural Chemists
a_w	Water activity
CCC	Calorie Control Council
cm	Centimeter
conc	Concentration
Dept	Department
e.g	For example
et al	And others
FAO	Food and Agriculture Organization
Fig.	Figure
g	Gram
i.e	That is (id est)
IFIC	International Food Information Council
InSDF	Insoluble dietary fiber
kcal	Kilocalorie
kg	kilogram
LDL	Low density lipoprotein
MDA	Malonaldehyde acid
mg	Milligram
min	Minute
ml	Milliliter
mm	Millimeter
Mt	Million ton
Ν	Neutin
nm	Nanometer
OAC	Oil absorption capacity

P.V	Peroxide value
resp	Respectively
rpm	Revaluation per minute
SAS	Statistical Analysis System
Sci	Science
SDF	Soluble dietary fiber
SEM	Scanning electron microscope
TBA	Thiobarbituric acid
TDF	Total dietary fiber
U	Unit
U.S.	United states
V/V	Volume per volume
W/W	Weight per weight
WHC	Water holding capacity
WHO	World Health Organization