Name of Candidate: Manal Mohamed Abdel-Hamid El-Bramony

Title of Thesis: A Genetic Study on Test-Day Milk Yield and Somatic Cell Count of Egyptian Buffalo Using Random Regression

Supervisors: Prof. Ali A. Nigm

Prof. Kawthar A. Mourad Chief Researcher

Department: Animal Production **Branch:** Animal Breeding

Approval: 29/12/2004

Degree: Ph. D.

ABSTRACT

Both fixed and random regressions were used to model test day records that are measured over the trajectory from days in milk (DIM) = 5 to 300 of the first three lactations for Egyptian buffalo. The covariance components were estimated with a single trait animal model with REML algorithm for each of daily milk yield (DMY) and log₁₀ somatic cell count (LSCC) for a total of 3189 records using the random regression model (RRM). Records were taken from four buffalo experimental research herds belonging to the Animal Production Research Institute, Egypt. between 1999 and 2004. The results indicated that herd-test date (HTD) affected (P<0.001) both DMY and LSCC in all lactations. HTD increased the accuracy of the model when compared with herd-year-season (HYS) effect. DIM affected significant for DMY while it was non-significant for LSCC in the first three lactations. Age at calving had a significant effect on both DMY and LSCC in the second and third lactations. First lactation had a different trend for both DMY and LSCC when compared to the 2nd and 3rd lactations. Curves for LSCC along the trajectory of DIM in the first three lactations of Egyptian Buffalo shaped like an inverted milk production curves. Heritability estimates within each lactation for DMY and LSCC had wide ranges in all lactations. Heritability estimates for DMY and LSCC averaged 0.12, 0.22 and 0.20 and 0.15, 0.07 and 0.09 in the first three lactations, respectively. Estimates, in general, tended to increase toward edges of the trajectory. Additive genetic variance across the first three lactations for DMY had different trends at the beginning of the trajectory (low in the 1st, medium in the 2nd and high in the 3rd) and then gradually increased to the end of the trajectory. Permanent environmental variances for DMY were relatively low at early lactation and tended to increase toward the end of the trajectory. Residual variances for DMY were low at both edges of the 3rd lactation contradicting the 1st and 2nd lactations. All variances (genetic, permanent environmental and residual) were very high for LSCC in the 1st lactation while they were low in 2^{nd} and 3^{rd} lactation. This result may suggest that LSCC in the 1st lactation is not genetically the same in the rest of lactations. In general, genetic parameters for SCC were comparable to those reported for dairy cattle indicating that reduction in SCC for buffaloes could be achieved using similar practices.

Keywords: genetic parameters, test day, milk yield, somatic cell count, Egyptian buffalo, random regression.

alitic

CONTENTS

I. INTRODUCTION	
I. INTRODUCTION	
II. REVIEW OF LITERATURE	6
2.1 Mammary gland immunity, mastitis incidence and somatic cell count	6
2.1.1 Mammary gland immune system	6
2.1.2 Mastitis incidence and milk losses	7
2.1.3 Origin and role of somatic cells	11
2.1.4 Statistical characteristics of somatic cell count	12
2.2 Non-genetic factors affecting milk somatic cell count	16
2.2.1 Infection status of the udder	17
2.2.2 Age at calving and parity number	18
2.2.3 Stage of lactation	23
2.3.4 Season of calving	26
2.2.5 Herd	29
2.2.6 Day-to-day variation and diurnal variation	29
2.3 The use of test day records in genetic evaluation of dairy cattle	30
2.3.1 Fitting the lactation curve	33
2.4 Modeling of repeated measurements	37
2.4.1 Repeatability model	37
2.4.2 Multivariate (MV) technique	38
2.4.3 Random Regression (RR) technique	38
2.5 Genetic parameters for somatic cell count	40

٠.

2.5.1 Estimation of heritability for SCC	41
2.5.2 Estimation of repeatability for SCC	47
2.5.3 Genetic, phenotypic and permanent environmental correlations for SCC	50
III. MATERIAL AND METHODS	60
3.1 Data	60
3.2 Animals and Management	63
3.3 Statistical Analysis	63
3.3.1 Fixed effect model	63
3.3.2 Genetic parameters model	64
3.3.3 Estimation of genetic parameters	66
IV. RESULTS AND DISCUSSION	68
4.1 Means of daily milk yield (DMY), somatic cell count (SCC) and log ₁₀ somatic cell count (LSCC) in the first three lactations	68
4.2 Non-genetic effects for DMY, Kg and LSCC in the first three lactations	69
4.2.1 Herd-test date	69
4.2.2 Days in milk (DIM)	71
4.2.3 Age at calving	71
4.3 Covariance structure and genetic parameters for DMY and LSCC	76
4.3.1 Additive genetic and permanent environmental covariances for DMY	76
4.3.2 Additive genetic and permanent environmental covariances for LSCC	81
4.3.3 Residual and phenotypic variances of DMY	84

`_

~

П

4.3.4 Residual and phenotypic variances of LSCC	87
4.3.5 Heritability for DMY	
4.3.6 Heritability for LSCC	91
4.3.7 Genetic and permanent environmental correlations for DMY	93
4.3.8 Genetic and permanent environmental correlations for LSCC	95
4.3.9 Phenotypic correlations for DMY	99
4.3.10 Phenotypic correlations for LSCC	99
V. CONCLUSION	
VI. SUMMARY	104
VII. REFERENCES	
ARABIC SUMMARY	

Ш

. -

LIST OF ABBREVIATIONS

СМ	Clinical mastitis
DF-REML	Derivative-free restricted maximum likelihood
DIM	Days in milk
DMY	Daily milk yield
h ²	Heritability
HTD	Herd-test date
HYS	Herd-year-season
LSCC	Log ₁₀ somatic cell count
MV	Multivariate
rg	Genetic correlation
r <i>p</i>	Phenotyic correlation
rpe	Permanent environmental correlation
RRM	Random regression model
SCC	Somatic cell count
SCS	Somatic cell score
SD	Standard deviation
SE	Standard error
t	Repeatability
TD	Test day
TDM	Test day model

· +