المستخلص

أجريت تجربة حقلية خلال الموسمين الشتويين ٢٠٠٣/٢٠٠٢ و ٢٠٠٤/٢٠٠٣ بالمحطة البحثية لمركز البحوث الزراعية بالعريش في شمال سيناء لدراسة تأثير بعض الأسمدة العـضوية (زرق الــدواجن، مخلفــات عصر الزيتون، مخلوط من زرق الدواجن+ مخلفات عصر الزيتون} ونوعين من الاسمدة الحيويـــة (البكتيريـــا المذيبة للفوسفات ؛ والبكتيريا المثبتة للنتروجين) على النمو والمحصول الهجين الطماطم المحلي (أصبل). وتسم زراعة النباتات في العروة المُنتوية تحت الأنفاق البلاستيكية المنخفضة في تربة رملية، وأســتخدم نظـــام الــري بالتنقيظ في الري .ونتلخص أهم النتائج المتحصل عليها فيما يلي: (١) أدى استخدام زرق الدواجن وحـــدها أو زرق الدواجن + التلقيح البكتيريا المثبتة للنتروجين أو زرق الدواجن + مخلفسات عــصر الزيتــون + التلقــيح بالبكتيريا المثبتة للنتروجين إلى تحسين معظم صفات نمو محصول الطماطم عنداء يوم و ٩٠ يوم بعد السفتل. في كلا الموسمين (٢) أدى التلقيح بالبكتيريا المذيبة للفوسفات إلى زيادة معنوية في جميع صفات نمو النبات في كلا الموسمين (٣) أدى التلقيح بالبكتيريا المثبتة للفتروجين إلى زيادة معنوية في جميع صفات النمو المدروسسة بعد ٢٠ يوم و ٩٠ يوم من الثنتل بالمقارنة بالنياتات التي لم تعامل بها في كلا الموسمين (٤) أدى التسميد بزرق الدواجن مع التلقيح بالبكتيريا المذيبة للفوسفات إلى زيادة كل صفات النمو مثل الوزن الطازج والجساف للجسذر والأوراق والساق ا والوزن الطازج الكلي للنبات ؛ والمساحة الورقية للنبات عند ٦٠ و ٩٠ يوم بعد الـشنتل (٥) وجد أعلى محتوى من الكلوروفيل بأوراق نباتات الطماطم عند استخدام كلا من مخلفات عصر الزيتون ؛ وزرق الدواجن + مخلفات عصر الزيتون بدون استخدام أي من البكتيريسا المذيبسة للفوسسفات أو البكتيريسا المثبتسة للتتروجين (1) أدى إضافة زرق الدواجن + مخلفات عصر الزيتون مع التلقيح بالبكتيريا المذيبة للفوسفات إلىي الحصبول على أعلى قيمة للمحصول المبكر ومكوناته (٧) أدى استخدام زرق الدواجن + مخلفات عصر الزيتون مع التلقيح بالبكتيريا المثبتة للنتروجين ألى زيادة المحصول المتأخر الكلي ومكوناته في كلا الموسمين، فيما عسدا عدد ثمار الدرجة الأولى للنبات ألولجد وللفدان في الموسم الأول (٨) أدى استخدام زرق الــدواجن + مخلفــات عصر الزيتون إلى الحصول على أعلى القيم للمحصول الكلي ومكوناته مثل عسدد ووزن الثســار قسى النبــات الواحد، ووزن الثمار للغدان وكذلك المحصول الكلي للفدان مع عدم الاختلاف معنويا عن استخدام زرق الدواجن وحدها في كلا الموسمين (٩) كان استخدام زرق الدواجن + مخلفات عصر الزيتون مع التلقيح بالبكتيريا المثبتة للنتروجين مثبجعا للحصول على أعلى القيم للمحصول الكلى ومكوناته معبرا عنها في صورة عدد ووزن الثمار للنبات ، ووزن الثمار للغدان لكل من الدرجة الأولى والثانية تليها المعاملة التي استخدم فيهمما زرق المدواجن + التلقيح بالبكتيريا المثبتة للنقروجين وحدها(١٠) استخدام زرق الدواجن مع التلقيح بالبكتيريا المثبتـــة للنتــروجين نتج عنها أعلى القيم من الحموضة الكلية في الموسم الأول تليها استخدام مخلفهات عسصر الزيتون +التلقيح بالمكتبريا المثبتة للنتروجين في الموسم الثاني. وكانت أعلى القيم من فيتامين ج عند استخدام زرق الــدولجن + التلقيح بالبكتيريا المثبتة للنتروجين، واستخدام مخلفات عصس الزيتون + البكتيريا المثبتة للنتروجين ، واستخدام زرق الدواجن +مخلفات عصر الزيتون + التلقيح بالبكتيريا المثبتة للنتروجين كما كانت أعلى القيم من المسواد الصلبة الذائبة الكلية مع استخدام زرق الدواجن + التلقيح بالبكتيريا المثبتة للنقروجين في كلا الموسمين.

ABSTRACT

A field experiment was carried out during winter seasons of 2002/ 2003 and 2003/2004 at The Experimental Research Station of The Agriculture Research Center, El-Arish, North Sinai. The main object of this research was to study the effect of different types of fertilizers; i.e., organic manure sources(Chicken Manure"ChM", Pressed Olive Cake"POC", and a mixture of Chicken Manure and Pressed Olive Cake) and two biofertilizers (Phosphate Dissolving Bacteria "PDB" and Nitrogen Fixing Bacteria "NFB") on growth and yield of tomato plants (local hybrid "Assail"). Plants were grown in the end of the winter season under low plastic tunnels and sandy soil condition using drip-irrigation system. The obtained results could be summarized as follows: (1) application of ChM alone, ChM + NFB or ChM + POC + NFB enhanced most tomato plant growth characteristics at 60 and 90 days after transplanting in both seasons (2). Application of phosphate dissolving bacteria (PDB) increased significantly all plant growth traits in both seasons. (3). NFB increased significantly all growth studied traits of tomato plant after 60 and 90 days from transplanting, as compared to non inoculated ones in both seasons. (4). Application of ChM with PDB increased all plant growth parameters, viz; fresh and dry weight of root, leaves, stem and total fresh weight as well as leaf area per plant at 60 and 90 days from transplanting. (5). The highest chlorophyll content was recorded with POC, and ChM + POC both with or without PDB and NFB. (6). Application of ChM + POC with PDB was the best treatment for early yield and its components. (7) The favorable treatment for producing the highest total mid yield/fed was ChM + the two biofertilizers; i.e., PDB + NFB. (8). Application of ChM + POC with NFB was the best interaction treatment which increased total late yield and its components in the two growing seasons, except number of fruits of grade A per plant and per fed. in the first season, (9). Application of ChM + POC with inoculation of NFB was the favorable treatment for increasing total yield and its components expressed as number and weight of fruits per plant and fruits weight per fed. in both grade A and B followed by the treatment received ChM + NFBonly. (10). ChM with NFB had the highest record of total acidity (0.99% in the first season) followed by POC + NFB (0.86%) in the second season. The highest values of V.C were with ChM + NFB, POC + NFB and ChM + POC + NFB in both seasons. The highest values of TSS were recorded by application of ChM + NFB in both seasons (9.7%; 9.3% in the first and second seasons, respectively).

CONTENTS

Pa	ige	e
----	-----	---

	-
I. INTRODUCTION	1
H. REVIEW OF LITERATURE	3
III. MATRIAL AND METHODS	14
IV. RESULTS AND DISCUSSION	22
4.1 Plant growth	
4.1.1 Effect of organic manure sources	22
4.1.2 Effect of PDB	22
4.1.3 Effect of NFB	22
4.1.4 Effect of interaction between organic manure sources and PDB	28
4.1.5 Effect of interaction between organic manure sources and NFB	33
4.1.6 Effect of interaction between PDB and NFB	33
4.1.7 Effect of interaction among organic manure sources, PDB and NFB	33
4.2 Growth attributes	
4.2.1 Effect of organic manure sources	40
4.2.2 Effect of PDB	40
4.2.3 Effect of NFB	43
4.2.4 Effect of interaction between organic manure sources and PDB	43
4.2.5 Effect of interaction between organic manure sources and NFB	43
4.2.6 Effect of interaction between PDP and NFB	44
4.2.7 Effect of interaction among organic manure sources, NFB and PDB.	44
4.3 Photosynthetic Pigmonts	

4.3 Photosynthetic Pigments

4.3.1 Effect of organic manure sources	44
4.3.2 Effect of PDB	44
4.3.3 Effect of NFB	48
4.3.4 Effect of interaction between organic manure sources and PDB	48
4.3.5Effect of interaction between organic manure sources and NFB	48

4.3.6 Effect of interaction between PDP and NFB	48
4.3.7 Effect of interaction among organic manure sources, NFB and PDB.	52

4.4 Leaves and fruits content of N, P and K

4.4.1 Effect of organic manure sources	52
4.4.2 Effect of PDB	52
4.4.3 Effect of NFB	54
4.4.4Effect of interaction between organic manure sources and PDB	54
4.4.5 Effect of interaction between organic manure sources and NFB	54
4.4.6 Effect of interaction between PDB and NFB	57
4.4.7 Effect of interaction among organic manure sources, PDB and NFB	57

4.5 Fruit yield

4.5.1 Early yield

4.5.1.1 Effect of organic manure sources	57
4.5.1.2 Effect of PDB	59
4.51.3 Effect of NFB	59
4.5.1.4 Effect of interaction between organic manure sources and PDB	64
4.4.1.5 Effect of interaction between organic manure sources and NFB	64
4.5.1.6 Effect of interaction between PDB and NFB	67
4.5.1.7 Effect of interaction among organic manure sources, PDB and NFB.	67

4.5.2 Mid yield

4.5.2.1 Effect of organic manure sources	73
4.5.2.2 Effect of PDB	73
4.5.2.3 Effect of NFB	73
4.5.2.4 Effect of interaction between organic manure sources and PDB	75
4.5.2.5 Effect of interaction between organic manure sources and NFB	75
4.5.2.6 Effect of interaction between PDP and NFB	.75
4.5.2.7 Effect of interaction among organic manure sources, NFB and PDB.	78

4.5.3 Late yield

4.5.3.1 Effect of organic manure sources	78
4.5.3.2 Effect of PDB	78
4.5.3.3 Effect of NFB	78
4.5.3.4 Effect of interaction between organic manure sources and PDB	81
4.5.3.5 Effect of interaction between organic manure sources and NFB	81
4.5.3.6 Effect o0f interaction between PDB and NFB	81
4.5.3.7 Effect of interaction among organic manure sources, NFB and PDB.	84

4.5.4 Total yield

4.5.4.1 Effect of organic manure sources	84
4.5.4.2 Effect of PDB	87
4.5.4.3 Effect of NFB	87
4.5.4.4 Effect of interaction between organic manure sources and PDB	91
4.5.4.5 Effect of interaction between organic manure sources and NFB	91
4.5.4.6 Effect of interaction between PDB and NFB	91
4.5.7 Effect of interaction among organic manure sources, NFB and PDB	97

4.6 Fruit quality

Ara	bic summary	
	VI. References	111
	V. Summary	106
	4.6.7 Effect of interaction among organic manure sources, NFB and PDB	103
	4.6.6 Effect of interaction between PDP and NFB	103
	4.6.5 Effect of interaction between organic manure sources and NFB	100
	4.6.4 Effect of interaction between organic manure sources and PDB	100
	4.6.3 Effect of NFB	100
	4.6.2 Effect of PDB	100
	4.6.1 Effect of organic manure sources	97