CONTENTS

L

	Page
1-INTRODUCTION .	1
2- REVIEW OF LITERATURE .	2
3- MATERIALS AND METHODS .	46
4- RESULTS AND DISCUSSION .	55
1 : The causal organism.	55
2 : Pathogenicity test .	56
3 : Estimation of the recent acquiered fungicidal	59
resistance level of mycelium of the natural	
population of <i>R.solani</i> to different fungicides .	
3.1: Resistance to Rizolex.	59
3.2: Resistance to Rizolex.T.	62
3.3: Resistance to Vitavax.T.	65
3.4: Resistance to Monceren .	68
3.5: Resistance to Thiram .	71
4: Cross resistance among the different tested fungicides	75
5: Effect of different temperatures on acquiered	77
resistance to fungicides .	77
5.1: Effect of temperatures on the resistance and sensitive	
isolates to Rizolex.	77
5.2 : Effect of temperatures on the resistance and	
sensitive isolates to Rizolex.T.	77
5.3 : Effect of temperatures on the resistance and	
sensitive isolates to Vitavax.T.	78
5.4 : Effect of temperatures on the resistance and	
sensitive isolates to Monceren	78
5.5 : Effect of temperatures on the resistance and	
sensitive isolates to Thiram .	78
6: Effect of exposure of sensitive isolate (R3) of R.solani	84
to U.V rays	
7: Effect of an acquired resistance on the physiological	87
characters :	0.1
7.1: Correlation between resistance to different	88
fungicides and virulence of <i>R.solani</i> isolates .	
7.2: Effect on oxidative enzymes .	89
SUMMERY	94
LITERATURE CITED	94 100
	100
ARABIC SUMMARY	

Summery

Rhizoctonia solani fungus is the causal organism to damping-off and root rot in cotton, it is also attacking a lot of cultivars. Pesticides are the most important way to control this disease, but there is some isolates of this fungus appeared resistance to fungicides this made a big problem. The resistance is dynamic matter didn't static, different from time to time and from place to another, so this work aimed to illiminate the problem of a acquired resistance in the natural populations of *R solani*. all isolates were isolation, purification and identification of fungal isolates in different governorates in Egypt, El-dakahlia . 14 Gharbia, Kafr El Shikh, El-Behera, Domietta, El Sharkia and El-Monofía, all isolates were able to attack cotton seeds.

The present work aims to :

- 1- Study thepathogenicity of all isolates of the fungal.
- 2- Study the current situation of the acquiered resistance problem in *R.solani* in Egypt .
- 3- Study relation ship between the different isolates of *R.solani* isolated from different locations .
- 4- Studying possible cross resistance fungicides in the different isolates .
- 5- Effect of different temperatures on acquiered resistance to fungicides .
- 6- Study the effect of exposure U.V rays on sensitive isolate .
- 7- study Correlation between % virulence of *R.solani* isloates and resistance index to different fungicides.
- 8- Study the activity of oxidative enzymes in R. solani isolates .

1) Studied the pathogenicity of R. solani isolates .

There were a significant differences among the virulence of the different isolate of *R.solani* R_5 , R_6 and R_7 were the most virulent isolates since not survival plants, R_2 , R_3 , R_8 isolates showed moderate virulence R_1 , R_4 , R_9 and R_{10} showed the lowest degrees of virulence.

2) Fungicidal resistance of *R. solani* isolates :

The ten *R.solani* isolates representing 7 governorates were tested for their resistance to 5 fungicides, representing the different fungicide groups to which belong most of the fungicides used to control damping off and root rot disease.

a) Resistance to organophosphorus compounds: a-1) Resistance to Rizolex :-

The isolates classified to three groups depending on their acquired resistance to Rizolex. The first group were 8 isolates very sensitive which IC_{50} ranging from 0.4 to 1 p.p.m and resistance factor (RI) were ranged to 1 to 2.5 (R₁, R₂, R₃, R₄, R₅, R₈, R₉ and R₁₀ isolates). The second group contain one isolate (R₇) moderate resistance with IC_{50} 3.6 p.p.m and resistance factor 9, the last group was only one isolate R6 with IC_{50} 100 p.p.m and R1 (250) this isolate is very resistant.

a.2) Resistance to Rizolex.T :-

The isolates classified into 4 groups, the first one containing sensitive isolates with resistance factors ranging form 1 to 2.5 i.e (R_2 , R_3 , R_4 and R_7) isolates. The second group included two moderately resistant isolates R_1 and R_5 with (R I)

6.25 and 11.5 respectively the third class includes 3 high resistance isolate R_8 , R_9 and R_{10} showed (RI)27.5, 27.5 and 29 respectively. The last group contains very high resistant isolate R_9 with $1C_{50}$ 51 p.p.m and (RI) 157.5.

b) Resistance to carboxinalide compounds (Vitavax.T) :

The isolate (R_6) had a very high resistance index 17.14 and the isolate R_2 was high resistance with (RI) 13.6 the moderate resistance (R_1 , R_4 , R_5 , R_7 and R_9) with (RI) (8.6, 8.6, 3.7, 7.4 and 4.11) respectively.

The isolates R_3 , R_8 and R_{10} were sensitive with (RI) (1.1.5 and 1.43) respectively .

c) Resistance to phenylurea compound (Monceren) :

The isolates (R_1 , R_5 and R_8) respectively were very resistance. The isolates R_3 , R_4 , R_6 , R_9 and R_{10} were sensitive with (R1) (1,9,4,2.8 and 4) respectively.

d) Resistance to Thiram :

The IC_{50} ranged from 0.5 , 0.7 p.p.m for isolates R_{10} , R_3 . This was reflected on the resistance factor ranged from 0.8 to 1 for sensitive isolates. All the other isolates showed high IC_{50} , the most isolate resistance were two can be ranged IC_{50} 198 R_2 and R_7 with 270 p.p.m. We suggest that the resistance to this fungi , is amultigenic trait.

3) Cross resistance among the different fungicides :

There were positive correlation between cross resistance of fungicides Rizolex and Rixolex.T (0.974), Rizolex and

Vitavax.T (0.675), Rizolex and Thiram (0.069), Vitavax.T and Rixolex.T (0.592) and thiram with Vitavax.T(0.555).

On the other hand there were negative correlated coefficient of cross resistance between Monceren and Rixolex (-0.198), Monceren and Rixolex.T (-0.226), Monceren and Vitavax.T(-0.384), thiram and Rizolex.T (-0.046) and thiram with Monceren (0.066).

4) Effect of different temperatures on acquired resistance to fungicides:

The resistance isolate (R_0) to fungicide Rizolex didn't be any more resistance at 20° and 33°C comparison with at 25°C (RI) was 250 at 25°C and become 1.5 at 20° and 33°C. So at optimum temperature the resistance increased, the sensitive isolate IC₅₀ was 0.4 p.p.m at 25°C become 0.04 p.p.m at 20°C but at 33°c IC₅₀ was 0.6 p.p.m. About Rizolex.T the same thing to resistant isolate like Rizolex . The resistance decreased at 20°. 33°C than 25°C. The sensitive isolate become more resistance it 33°C than 25°C. Vitavax.T at 20°. 33°C the resistance isolate become sensitive while at 25°C it was resistance. The sensitive isolates become more resistance at 20° and 33°C the IC₅₀ was 1.4 at 25°C it become 11 and 25.5 at 20° and 33°C respectively. Fungicide Monceren the resistance increased with increasing the temperature since IC₅₀ were 40, 74 and 1260 p.p.m at 20°. 25°.33°C respectively. The sensitive isolate become more resistance at 20° and 33°C respectively. The sensitive isolate become more resistance at 20° and 33°C respectively. The

The fungicide Thiram :

The isolate resistance and sensitive become more resistance at 20° , 33° C more than it were at 25° C.

5) Effect of exposure sensitive isolate (R_3) to U.V radiation on the acquisition of fungicidal resistance :

The IC₅₀ increased from 0.4 p.pm in case of Rizolex the mother isolate to 0.8, 0.8, and 0.9 p.p.m at (5, 15, and 15 minutes of U.Vrays) respectively, this effect can be mutagen regarding the second fungicide (Rizolex.T), the IC₅₀ were increasing, since it were 0.4 p.p.m the mother isolate to 1.6, 1.8 and 2 p.pm) at (5,10,and 15 min .), concerning the IC₅₀ for Vitavax increased from 1.4 to 11 at 15 min. The same thing happened in Monceren. The IC₅₀ was 0.1 in the mother isolate and became 1 at 15 min. In case of thiram noticed that the mother isolate become resistance in all concentrations at all periods exposure to U.V rays. That means that the effect can be mutagene.

6) Correlation between % virulence of *R.solani* isloates and resistance index to different fungicals:

The correlation were very different from fungicide to another we found that there were a high significant variation between RI of (Rizolex, Rizolex, T and thiram) and virulence, there was significant variation between RI of Vitavax and virulence. There were non significant variation between RI of Monceren and virulence of the fungi.

7-Effect on oxidative enzymes:

All the resistant isolates were had very high activity of enzyme polyphenoloxidase than the sensitive isolate since the activity were 0.060, 0.070 and 0.057 to (R_6 R_8 and R_7) respectively comparing with R_3 0.056. The same things were in fungicide

Monceren, but in thiram the level was not very high, the activity in R_7 was 0.057 and in R_3 0.026.

Enzyme activity of peroxidase in isolates (R_6 , R- and R_8) was also clearly resistant isolate (R_6 , R- and R_8) were very high activity than the sensitive isolates. The activity were (0.339,0.130 and 0.182) respectively in (R_6 , R_8 and R_7) Comparing with R_3 (0.098). So this enzyme was very high level on resistant isolate than sensitive isolate. On the other hand Catalse enzyme and Ascorbic acid were low level in resistant isolate than in sensitive isolate to all fungicides. That means that there were positive correlation between the activity of enzymes Polyphenoloxidase and Peroxidase with resistant isolates. On the other hand there is negative correlation between the activity of enzymes Catalas and Ascorbic acid with resistant isolates.