Abstract

Name: Seiam Hassan Abd El-Ghany Seiam

Title of the thesis:

Chemical behavior of phosphorus in some Egyptian soils

Degree of Doctor of philosophy, Cairo University, Faculty of science, Department of chemistry 2009.

The current of this work aims to throw light on some factors affecting phosphate adsorption in some Egyptian soils and the role of organic anions to decrease and/or inhibit this process. To fulfill these purposes, seven representative soil samples (0-30 cm depth) collected in this investigation. The tested soils have different chemical and physical properties and represent to the different abundant Egyptian soil textures (loamy, sandy, calcareous, and clay). An incubation experiment-for six months- was carried out at 30°C at rate of P concentrations of 0, 10,20,30,...,90 mg P/kg as KH₂PO₄. The investigated soils were found to have a moderate agreement with the linear Langmuir isotherm equation where their correlation coefficients were 0.500, 0.618, 0.521, 0.101, 0.687, -0.235, and 0.787, respectively, and for Freundlich isotherm equation the corresponding values of their correlation coefficients were 0.800, 0.867, 0.925, 0.524, 0.825, 0.858, and 0.853, respectively, whereas for the Temkin isotherm equation the corresponding correlation coefficients were 0.659, 0.752, 0.813, 0.293, 0.729, 0.899, and 0.775, respectively. Generally, Freundlich equation gave the best fit for the equilibrium P adsorption data than did the Langmuir and Temkin equations at range of P concentration of 0-90 mg P/l. The observed moderate values in their correlation coefficients of soils with the linear Langmuir isotherm equation are may be due to the presence of CaCO₃ contents in relatively amounts in these soils. Where, CaCO₃ has two or more adsorping sites having widely different affinity to sorb phosphate groups. Concerning Langmuir isotherm equation the MBC(maximum buffering capacity) values were found to have an opposite trend with the X_m (adsorption maximum) values. Studding the effect of phosphate adsorption on pH of soil solution, the data showed that the pH of soil solution decreases with increasing the amount of P sorbed into soil surfaces. This may be attributed to the higher positive charge of clay mineral and the lesser competition of hydroxyl ions with phosphate into clav surfaces. The amount of adsorbed P was found to increase with increasing the time of incubation, that is probably due to the presence of CaCO₃ in high content and the higher pH values which ranged between 7.04 and 8.71 whereas the Ca-P compound are the dominant precipitates than that for Fe and Al ones. Fractionation analysis of soils by Chang and Jackson method showed that the abundance of different P fractions was in the order of : $Ca-P > Al-P > NH_4Cl-P > Fe-P > citrate$ dithionate -P (CDP) in the treated and untreated soils. Treatment of the investigated soils- after removing of their organic matter by using concentrated H₂O₂- by different types of organic anions (citrate, oxalate, and tartrate) was found to reduce and/ore inhibit the adsorption of P. This may be attributed to that at high pH values the carboxylate group of the organic anion has a negative charge high enough to compete phosphate group on active sites. The obtained results declared that the ability of organic anions to decrease phosphorus adsorption on soil surfaces followed the sequence: citrate > oxalate > tartrate.

Key words: Phosphorus- CaCO₃- adsorption- pH- Organic anions- Langmuir-Freundlich- Temkin- Fractionation -Chang and Jackson method

Supervisors:

1-Prof. Dr. Said Abd El- Rahman Mostafa 2- Prof. Dr. Ahmed Taher Abd El-Sadik

Chairman of Chemistry Department:

Contonito	
1- Introduction	1
2- Review of literature	3
2.1. Types of phosphorus in soil	3
2.2. Available phosphorus	4
2.3. Adsorbed phosphorus	6
2.4. Determination of phosphorus in soil	20
2.4.1. Detemination of P using the Inductive Coupled Plasma	
Technique	21
2.4.2. Detemination of P using colorimetric methods	21
2.5. Technique and extraction for measuring available P in soil.	23
2.5.1. Main principles for P extraction	25
2.5.1.1. Olsen's extractants	25
2.5.1.2. Bray extractant	26
2.5.1.3. Mehlich No.1 extractant	26
2.5.1.4. Mehlich No.3 extractant	27
2.5.1.6. Morgan extractant	28
2.5.1.7. Ammonium bicarbonate- DTPA (AB-DTPA)	28
extractant	
2.5.1.8. Troug extraction	28
2.5.1.9. Acetic acid-extraction	28

Contents

2.6. Phosphorus fractionation	29
2.6.1. Modification of P-fractionation	29
2.6.2. Implications of P-fractionation	30
3.Materials and methods	36
3.1 Reagents and Indicators	36
3.2. Soil samples	39
3.3. Preparation of solutions	39
3.4. Spectrophotpmectric method for the determination of	48
available phosphorus in soils	
3.5. Soil phosphorus fractionation procedure	49
3.6. Determination of different types of extracted phosphorus	50
3.7. Determination of some soil chemical properties	51
3.8. Experimental design	55
3.9. Statistical analysis and calculation methods	57
4. Results and discussion	58
4.1. Introduction	58
4.1.1 Phosphorus adsorption isotherm curves	58
4.1.2. Langmuir adsorption isotherm equation	59
4.1.2.1. Description of conventional Langmuir indices of	
investigated soils	65
4.1.2.2. Interrelationships between P adsorption indices	67
4.1.3. Freundlich adsorption isotherm	68

4.1.4. Temkin adsorption isotherm	74
4.2. Effect of phosphate adsorption on pH changes	79
4.3. Effect of incubation period on phosphate adsorption	83
4.4. Fractionation of different phosphorus forms	88
4.5. Effect of organic anion on phosphate adsorption	94
4.5.1. Comparison between citrate, oxalate, and tartarate	
anions effect on phosphate adsorption	98
4.5.2. Fitting IR charts for adsorption phenomenon	101
5.Summary	106