CONTENTS

Acknoledgement	I
List of Eigunog	1
List of Figures	a
List of abbraviation	e
	g 1
	1
II-KEVIEW OF LITEKATUKE	5 25
1. Dathogenicity test	23
1. Pathogenicity test	23
1.2. Description of the applied Isolates	23
1.2. Purification and activation	23
1.3. Pathogenicity experiment.	25
1.3.1. In vitro inoculation: Bioassay of fungal growth activity	25
	25
1.3.1.1. Nutritional media	26
1.3.1.1.1. Potato dextrose agar (PDA) (Walbeek <i>et al.</i> , 1968)	26
	•
1.3.1.2. Yeast extract sucrose (YES) (Davis <i>et al.</i> , 1966)	26
1.3.1.1.3. Potato sucrose Agar (P.S.A) (Frisvad and Thrane, 1995 and Casa <i>et al.</i> , 1998).	26
1 3 2. In Vivo inoculation	26
1 3 2 1 Inoculation with fungal spores	26
1 3 2 1 1 High inoculum density	26
13212 Low inoculum density	20
1.3.2.7. Low modulin density.	27
1.3.2.2.1 Effect of the tested toying on the tested corn plant	27
1.3.2.2.1 Effect of the tested toxins on the tested complain.	21
1.4. Determination of mycoloxins production potentials of the tested isolates.	77
1 <i>4</i> 1 <i>4 f</i> gauge	27
1.4.1. A. Jlavas	27
1.4.1.2. A flow of Aflatoxins in <i>A. flavus</i> culture	27
1.4.1.2. Aflatoxin estimation in liquid medium	28
1.4.2. F. verticilloides.	28
1.4.2.1. Detection of fumonisin in culture of <i>F. verticilloides</i>	28
1.4.2.1. 2. Detection of Fumonisin in liquid solution	29
2. Determination of some components of the tested herbal plants	
	29
2.1. Detection of strange materials or biotic pollutants in the tested herbal	
plants	29
2.2. Source of mold inhibitors and BHA antioxidant	30
2.2.1. Source of Herbal plant oils	30
2.2.1.2. Determination of aflatoxins and fumonisins in tested herbal plants	20
	30

2.3. Determination of active components in tested Herbal plant		
	30	
2.3.1. Preparation of herbal plant extracts	30	
2.3.1.2. Gas chromatography (G.C) analysis of eugenol, carvacrol and	-	
thymol	31	
2.3.1.3. Determination of Vitamin E (alpha-toccopherol) in BC seeds, oil and		
extract	31	
2.3.1.4. Fatty acids content in the tested herbal plants	31	
3. Effect of the tested mold inhibitors, indigenous substances and BHA	21	
antioxidant <i>in Vitro</i>	3 I 21	
3.1. Effect on fungal growth	31	
3.1.1. Antifungal activity assay.	34	
3.1.2. Determination of fungal linear growth	34	
2.4. Electing technique	34	
3.4. Floating technique	34	
5.5. Effect of the tested synthetic mold minoritors and plant extracts and ons	35	
3.5.1 Aflatoxin estimation	35	
3.5.2. Eumonising Estimation	34	
A Effect of the tested mold inhibitors indigenous substances and BHA	5.	
antioxidant in Vivo	34	
4 1 Germination Tests	34	
4.2. Field study	36	
4.2.1. Effect of the tested pathogen-mold inhibitor interactions and their	50	
application sequences on plant growth		
	36	
4.2.2. Determination of grain moisture content	36	
4.2.3. Effect of the tested treatments on toxin's production	37	
5. Effect of the tested mold inhibitors, indigenous substances and BHA		
antioxidant on mycotoxins production under storage conditions	-	
	38	
5.1. Effect of mold inhibitors, antioxidant and herbal plant during storage on	39	
mycotoxin production in mature grains		
	39	
5.1.1.Aflatoxins	39	
5.1.2.Fumonisins	39	
5.2. Effect of mold inhibitors, antioxidant and herbal plant on toxin's		
production during storage in immature grains	20	
6 Effect of the tested treatments on the content of some nutritional	35	
components of corn grains	30	
6.1 Determination of proteins		
6.2 Determination of amino acids	-+(/(
6.3 Determination of fibers	-+(⊿1	
6.4 Determination of moisture		
6.5 Determination of Ash	-+⊥ ⊿1	
6.6 Determination of fat	-+1 //	
6.7 Determination of carbohydrates	-+2 // 1	
0.7. Determination of carbonyurates.	44	

7. Statistical analysis	42
IV-EXPERIMENTAL RESULTS	43
1. Pathogenisty experiments	43
1.1. Origin of the applied isolates	43
1.1.1. Fusarium verticilloides isolate	43
1.1.2. Aspergillus. flavus isolate	44
1.2. Purification of Isolates	44
1.3. Inoculation experiments	44
1.3.1. In vitro inoculations	44
1.3.2. In vivo inoculations	45
1.3.2.1. Inoculation with fungal spores	45
1.3.2.2. Inoculations with fungal filtrates	45
1.3.2.2.1. A. flavus filtrate and aflatoxin standard solution	45
1.3.2.2.2. F. verticilloides filtrate and fumonisins standard solution	
	50
1.4. Symptoms description	50
1 4 1 Eugenium vorticilloides	50
1.4.1. Fusarium veriiciioides	50
2. Detection of musclearing mechanics officiency by A flower and E	30
2. Detection of mycotoxins production efficiency by A. <i>flavus</i> and F.	51
	51
	51
2.2. Fumonisins	51
3. Determination of some components of the tested herbal plants	FC
	50 56
3.1. Active components.	56
3.2. Vitamin E (alpha-toccopherol) in BC	64
3.3. Fatty acids content	64
3.3.1. Total fatty acids content	64
3.3.2. Single fatty acids content	64
3.4. Aflatoxins and fumonisins content	66
4. Effect of the tested mold inhibitors, indigenous substances and BHA	
antioxidant in Vitro and in Vivo.	66
4.1. In vitro experiment	66
4.1.1. Effect on fungal growth	66
4.1.1.2. Determination of linear growth	76
4.1.1.3.Determination of minimal inhibitory concentration (MIC)	76
4.1.1.3.2. Antitox plus (AP)	76
4.1.1.3.3. Fix-a-tox (FAT)	76
4.1.1.3.4. Black cumin (BC) oil and extract	77
4.1.1.3.5. Clove oil and extract	77
4.1.1.3.6. Thyme extract	77
4.1.1.4. Microscopic examination	84
4.1.1.4.1. F. verticilloides	84
4.1.1.4.2. A. flavus	85
4.1.2. Effect on mycotoxin production	97
4.1.2.1. Aflatoxins	97
4.1.2.2. Fumonisins	97
4.2. In vivo experiments	100

4.2.1. Effect of the tested mold inhibitor substances on some growth						
parameters of maize Plants	100					
4.2.1.1. Germination %	100					
4.2.1.2 Plant growth and development	100					
4.2.1.2.1 Non inoculated maize plants	100					
4.2.1.2.1. Non-inoculated maize plants						
4.2.1.2.2. Inoculated malze plants						
4.2.1.2.2.1. Aspergullus flavus						
4.2.1.2.2.2. Fusarium verticilloides.						
4.2.1.3. Stalk length						
4.2.1.4. Shelled cob dry weight	115					
4.2.1.4.1. F. verticilloides treatments						
4.2.1.4.2. A. <i>flavus</i> treatments	113					
4.2.1.5. Effect on maize grain dry weight.	116					
4.2.1.5.1. Mold inhibitors efficacy analysis	116					
4.2.1.5.1.1. Fusarium verticilloides	116					
4.2.1.5.1.2. Aspergillus flavus	119					
4.2.2.1.6. Global effect of treatments on stalk length, dry free cob weight and						
dry grain weight	119					
4.2.2.1.6.1. A. flavus	119					
4.2.2.1.6.2. F. verticilloides	122					
4.2.1.7. Mycotoxin content	122					
4.2.1.7.1. Aflatoxins	122					
4.2.1.7.1.1. Variations among mold inhibitors	122					
4.2.1.7.1.2. Variations among application sequences	122					
4.2.1.7.2. Fumonisins	123					
4.2.1.7.2.1. Variations among mold inhibitors	123					
4.2.1.7.2.2. Variations among application sequences	123					
4.2.2. Effect of the tested mold inhibitor substances, on mycotoxin content in						
grains of infected maize plants during storage	126					
4.2.2.1. Immature grains	126					
4.2.2.1.1. Fumonisins	126					
4.2.2.1.2. Aflatoxins	126					
4.2.2.2. Mature grains (dent grains)	130					
4.2.2.1. Fumonisins	130					
4.2.2.2.2. Aflatoxins	130					
4.2.3. Some nutritive parameters of inoculated maize grains treated with the	10.4					
mold inhibitor substances, during storage	134					
4.2.3.1. Protein content	134					
4.2.3.2. Amino acids content	134					
4.2.3.2.1 <i>A. flavus</i>	134					
4.2.3.2.2. F. verticilloides	134					
4.2.3.2.3. Amino acids content, as affected by pathogens (treatments - global)						
and by treatments (pathogens - global)	138					
4.2.3.2.3.1. Effect of pathogens (treatments - global)	138					
4.2.3.2.3.2. Effect of treatments (pathogens - global)	138					
4.2.3.3. Fiber content	140					
4.2.3.3.1. A. flavus	140					
42332 E verticilloides	140					

4.2.3.4. Moisture content	140
4.2.3.4.1. A. flavus	140
4.2.3.4.2. F. verticilloides	141
4.2.3.5. Ash content	142
4.2.3.5.1. A. flavus	142
4.2.3.5.2. F. verticilloides	142
4.2.3.6. Fat content	143
4.2.3.6.1. A. flavus	143
4.2.3.6.2. F. verticilloides	143
4.2.3.7. Carbohydrate content	143
4.2.3.7.1. A. flavus	143
4.2.3.7.2. F. verticilloides	144
V-DISCUSSION	146
VI-ENGLISH SUMMARY	157
VII-LITERATURE Cited	165
VIII-ARABIC SUMMARY	185

LIST OF ABBREVIATIONS

AP	:	Antitox plus
FAT	:	Fix-a-tox
BC	:	Black cumin
F. verticilloides	:	Fusarium verticilloides
A. flavus	:	Aspergillus flavus
SAS	:	Same time application sequence
PAS	:	Previous application sequence
SBAS	:	Subsequent application sequence
GDW	:	Grain dry weight
MPP	:	Mycotoxins-producing-pathogens
SCDW	:	Shelled cob dry weight
MIC	:	Minimal inhibitory concentration
USFA	:	Unsaturated fatty acids
SFA	:	saturated fatty acids

CHAPTER VI

SUMMARY

Corn grain rots incited by *Aspergillus flavus* and *Fusarium verticilloides* cause great losses in yield. Moreover, mycotoxins produced by these fungi are very dangerous to human and animal health. Treatment of grains with some imported synthetic mold inhibitors, i.e. fix-a-tox (FAT), antitox plus (AP) and butylated hydroxyanisole (BHA) antioxidant are recommended to suppress growth and mycotoxins production by these pathogens.

The present study was carried out to investigate the effect of these substances on growth and development of these pathogens and their capability to suppress mycotoxins production. Other indigenous herbal products were also studied as locally available natural mold inhibitors. Efficiency of synthetic and natural mold inhibitors were tested under laboratory, field and storage conditions. Moreover, the effect of treatment with synthetic and natural mold inhibitors on some growth and nutritional parameter was also studied.

The obtained results could be summarized in the following items:

I- Pathological studies:

- (1) An isolate of *F. verticilloides*, previously isolated and tested by the author was used throughout this study. However, before using the isolate was recultured and purified whereas, identification was verified in specialized laboratories in France.
- (2) An isolate of *A. flavus* was isolated from infected corn grains; however preliminary tests proved that it was incapable of producing aflatoxins. Therefore, an aflatoxin-producing isolate, No. NRBL 3352, was introduced from laboratory of mycotoxins, National Research Center to be applied throughout the present work.
- (3) Pathogenicity of the applied isolates was tested in our laboratories and obtained symptoms similar to those of natural infection.
- (4) Pathogenicity of the isolates was tested, using two concentrations of inocula. The high conc. of *A. flavus* inoculum significantly reduced % germination and plant length and increased % of infected grains. Inoculation with the low conc. of *F. verticilloides* inoculums resulted in significant increase in % of infected grains (72%). Differences in % of infected grains between low and high conc. inoculums were insignificant.
- (5) Inoculation of healthy corn cobs with cultural filtrates of *A. flavus* resulted in symptoms, similar to those produced by inoculation with standard solutions of aflatoxins. Symptoms include yellowing, which turned gradually to brown and grains appeared burned.
- (6) Similar inoculations with cultural filtrates of *F. verticilloides* resulted in symptoms similar to those produced by inoculation with standard solutions of

fumonisins. Symptoms include wilting, dryness, yellowing reddish discoloration on both sides of grain and on cob sheaths.

- (7) Examination of the tested fungi, growing on thin agar films under ultraviolet at wavelengths 254 nm and 266 nm, indicated that the applied isolate of *A. flavus* is capable of producing aflatoxins (appearance of blue fluorescence) and that *F. verticilloides* is capable of producing fumonisins (appearance of violet fluorescence).
- (8) Quantitative analysis showed that *A. flavus* produced aflatoxins at the rate of 7.6-8 ppb, whereas *F. verticilloides* produced fumonisins at the rate of 10.90-11.2 ppm.

II- Determination of some characteristics of the tested herbal medicinal

plants.

(A) <u>Active components:</u>

- (1) Thyme extract contained 32% carvacol and 67% thymol.
- (2) Black cumin oil contained 4.36% carvacol and 41.25% thymol, whereas the ratios were 54.68% and 28.13, respectively in ground clove.
- (3) Eugenol content was 78.41% in clove oil, 34% in ground clove and 27.16% in clove extract.

Vitamin E (Alpha-tocopherol)

Alpha-tocopherol content was 5 mg/kg in ground BC and 0.32 mg/kg in BC oil, however, no alpha-tocopherol was detected in BC extract.

(B) Fatty acids

- (1) Unsaturated fatty acid content in thyme extract and ground BC were 1.2 to 2fold as much as saturated fatty acids content, respectively. Moreover, unsaturated fatty acids content in BC oil (73.45%), was 5-fold as much as BC extract.
- (2) Linolenic acid was the most predominant fatty acid in BC oil and extract (42.87% and 35.14%, respectively). Moreover, behimic and arashidic fatty acids were detected only in BC oil (10.25 and 2.33%, respectively).
- (3) Stearic acid was the main fatty acid in clove oil and extract (58.43 and 59.59%, respectively).
- (4) Oleic acid was the prevailing fatty acid in thyme extract (34.11%).

(C) <u>Occurrence of mycotoxins</u>

(1) Using fluorometric techniques, all the tested herbal products proved to be free of aflatoxins or fumonosins.

III- Effect of the tested substances on growth of A. flavus and F.

verticilloides under laboratory conditions

(A) <u>Hole-plate diffusion method</u>

Antifungal activity assay indicated that clove oil and BHA antioxidant completely inhibited growth of both tested fungi. On the other hand, clove extract completely inhibited growth of *A. flavus*, but partially inhibited growth of *F. verticilloides* (73.5%). On the contrary, the both tested synthetic treatments did not affect growth of the the tested fungi in this technique.

(B) <u>Linear growth technique</u>

Clove oil and extract and BHA completely suppressed growth of both fungal isolates, however, ratios of inhibition were less in BC extract and thyme extract. Their effect was more pronounced on *F. verticilloides* than *A. flavus*. On the other hand, antitox-plus (AP) had no affect on growth of both isolates.

(C) Minimal inhibitory concentration (MIC)

MIC values were 0.1% for clove oil and extract and 200mg/kg for BHA. *A. flavus* proved to be more sensitive to FAT and AP than *F. verticilloides*, which was more sensitive to BC oil. Both isolates were similar in their sensitivity to thyme extract.

(D) <u>Floating on liquid medium</u>

Microscopic observation of *F. verticilloides* cellophane films showed that treatment with FAT, AP and BHA resulted in characteristic agglomeration of macroconidia, formation of chlamidospore-like structures, lyses and disintegration of cell walls, leakage of cell components And deformation of macroconidia. BC oil and clove extract induced similar symptoms in their high concentrations.

Microscopic observation of *A. flavus* cellophane films indicated that treatment with synthetic substances resulted in segregation of head parts, breakdown of heads, changes in cell wall thickness, coarceness and deformation of conidiophores and heads. Treatment with clove extract gave similar effects at high concentrations.

(E) <u>Mycotoxin production</u>

All the tested substances, successfully suppressed the production of aflatoxin by *A*. *flavus* under laboratory conditions. Moreover, significant reduction of fumonisins production was realized by these substances. Highest reductions in fumonisins production by *F. verticilloides* was incited by clove oil (92.52%), whereas, BC extract induced the lowest reduction rates (17.33%).

IV- Effect of the tested substances on A. flavus and F. verticilloides under field conditions.

Preliminay determination of soil EC (3.4 moh/g) and pH (7.5) were carried out before planting. Moreover, effect of application sequences of treatment with mold inhibitors and inoculation (previous-PAS, at same time-SAS and subsequent-SBAS) were also included throughout field experiments.

(A) Effect on germination%

All treatments led to significant reduction in germination % of maize grains, compared with untreated control. The highest percentages of germination was obtained in FAT treatment (78% and 50%, in laboratory (in vitro) and in field (in vivo), respectively), followed by ground clove (55.33% and 40.66%, in laboratory and in field, respectively).

(B) Effect on stalk length

At same time, treatments gave the highest values of stalk lengths. This was true for all the tested substances and the applied pathogens. Moreover, ground clove with F. *verticilloides* and ground BC with *A. flavus* gave the highest stalk length values (110.43 cm and 142.43 cm, respectively).

(C) Effect on shelled cob dry weight

The highest values of shelled cob dry weight were realized by ground BC and FAT with *F. verticilloides*, followed by ground clove (94.45 %, 94.45 % and 83.39 %, respectively), compared with untreated non-inoculated control. Moreover, same time treatment gave the best results. In *A. flavus* treatments, the highest shelled cob dry weight values were realized by clove oil and antitoxplus (AP) (74.71% and 72.11%, respectively of untreated non inoculated control). This was true for all sequences.

(D) Effect on grain dry weight

Same time treatment gave the highest values of grain dry weight, compared with other tested sequences in both *A. flavus* and *F. verticilloides*. Moreover, highest values were obtained by ground BC in *F. verticilloides* treatment (12.86gm) and FAT in *A. flavus* treatment (8.51 gm).

(E) Effect on mycotoxins content in grains

In *F. verticilloides* treatment, mycotoxin content in grains significantly varied according to the tested application sequence and the applied substances. All of the tested substances completely suppressed fumonisin production if applied one week previous inoculation (PAS). Subsequent application (SBAS) of clove oil and clove extract were the most efficient in suppressing mycotoxin production in grains. At SAS treatments, BC oil and BC extract realized the highest suppressive rates, compared with the other tested substances. Moreover, AP induced the highest mycotoxin suppression rates, regardless of the application sequence tested.

(9) In *A. flavus* treatments, the highest suppressive rates were realized in SAS. Moreover, AP was the most effective among the tested substances in suppressing mycotoxin production.

V. Effect of the tested substances on *A. flavus* and *F. verticilloides* under storage conditions.

(A) In Immature grains

Fumonisins content in inoculated untreated stored immature grains was 7.5 ppm. The highest toxin reduction rates were realized by BHA antioxidant (76.33%, compared with untreated control). On the other hand, aflatoxin content in untreated stored grain inoculated with *A. flavus* was 11 ppb. FAT was the most effective among the other tested substances in reducing aflatoxin production in grains (reduction rate was 90.88% of control).

(B) In mature grains

Fumonisin content in stored untreated mature grains inoculated with *F. verticilloides* was 8.8 ppm. All the tested substances significantly reduced fumonisins production (reduction rates were 67.59-88.86% of control). In *A. flavus* treatments, aflatoxins content in stored untreated mature grains were 462.9 ppb. Treatment with clove oil, clove extract, BC oil and BC extract completely suppressed aflatoxins production during storage. In addition, treatment with synthetic mold inhibitors FAT and AP resulted in considerable reduction in aflatoxins production (84.58-90.88% of untreated control).

VII- Effect of treatment with the tested substances on some nutritional components of maize grain under storage conditions

(A) Proteins and aminoacids

Protein content in stored grains inoculated with *F. verticilloides* showed insignificant changes by treatment with FAT or ground clove. However, treatment with BHA significantly increased protein content (8.5% more than untreated control). In contrast, the ground clove was the only tested substance that increased protein content in grains inoculated with *A. flavus* (14.63% of untreated control).

In *F. verticilloides* trials, treatment with FAT resulted in significant reduction in the content of many amino-acids, i.e. proline (19.54 %), aspartic (12.69 %), cysteine (60.71), valine (35.45 %), isoleucine (53.25 %) and leucine (35.53%). Moreover, treatment with BHA significantly reduced the content of threonine, serine, glutamic, glycine, alanine, phenylalanine and tyrosine. Amino-acid content showed insignificant changes in ground clove treatment.

In *A. flavus* treatments, FAT significantly increased the content of methionine and threonine (67.4 and 10.17 % of untreated control, respectively), whereas, aspartic acid showed significant decrease (74%). On the other hand, BHA caused pronounced reduction in threonine, isoleucine and leucine content (46.5 %, 49.93 % and 41.30 %, respectively).

(B) <u>Fibers</u>

Fiber content in grains inoculated with *F. verticilloides* and treated with BHA showed significant increase (1.34 to 2.05-fold as much as control). Similar increase was obtained in *A. flavus* treatments (1.35-fold as much as untrated control). (C) Moisture

Treatment of stored grains with FAT and BHA resulted in pronounced reduction in moisture content both in *F. verticilloides* treatments (82.16 % and 68.94 %, respectively) and *A. flavus* (91.95% and 95.94%, respectively). In contrast,

treatment with ground clove increased moisture content in *A. flavus* treatment (1.3 fold as much as control).

(D) <u>Ash</u>

Treatment with FAT led to significant increase in ash content in both *A. flavus* and *F. verticilloides* treatments (1.4-fold as much as control). On the contrary, the other tested treatments significantly reduced ash content in *F. verticilloides* treatments, however ash content showed insignificant changes in *A. flavus* treatments , compared with control.

(E) Fats

Treatment with the tested synthetic mold inhibitors resulted in significant increase in fat content in both *A. flavus* and *F. verticilloides* treatments (19% and 29%, respectively). On the other hand, treatment with ground clove significantly reduced fat content in *A. flavus* treatment (34.15%), however, no changes were detected in fat content in *F. verticilloides* treatments.

(F) <u>Carbohydrates</u>

Treatment with the tested substances, significantly reduced carbohydrate content in both inoculated treatments in both inoculation treatments. Reduction rates were higher in *A. flavus* treatments treated with ground clove (2.5% compared with control) and in *F. verticilloides* treatments treated with FAT and BHA (5.64% and 5.22%, respectively.