ABSTRACT

Ahmed Hassanien Sallam Soliman: Evaluation and Application of Carotenoids Produced from Food Wastes by Some Microorganisms. Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2009.

The objective of the present study was to use the agro-food processing wastes (guava pomace, sugar cane bagasse and corn cobs), after hydrolysed by acid, as a carbon sources for carotenoid production by isolated yeasts. Pigmented yeasts were isolated from different plant leaves: tomato, maize, cotton, soy bean and sunflower leaves. Identification of the yeast isolates were performed through morphological and reproduction characteristics, along with physiological and biochemical tests. All yeast isolates were identified as Rhodotorula glutinis species. Trails for studying the carotenoid productivity of the wild strain R. glutinis were carried out in 4 media (glucose medium, guava pomace hydrolysed, sugar cane bagasse hydrolysed medium and corn cobs hydrolysed medium) and the effects of nutritional requirements (carbon concentrations, nitrogen sources and mineral sources) and environmental conditions (incubation period, initial pH, incubation temperature and aeration rate) were also studied. The maximum carotenoids production achieved by R. glutinis in sugar cane bagasse medium was 6.895 mg/l at the optimum conditions (3 % total reducing sugar, 1 % yeast extract, 0.2% MgSO₄.7H₂O, pH 6, incubation temperature 30 ^oC and aeration rate 175 rpm after 120 h). The wild strain of R. glutinis was subjected to mutagenesis using UV radiation (254 nm) for 5 min. a mutant labelled as M1 and M2. In R. glutinis M1, the highest production of dry cell weight, volumetric carotenoid production and cellular carotenoid accumulation were 15.28 g/l, 7.237 mg/l and 474 μ g/g dry yeast. While in *R*. glutinis M2, the highest production of dry cell weight, volumetric carotenoid production and cellular carotenoid accumulation was 16.52 g/l, 7.516 mg/l and 454 µg/g dry yeast. Under the optimal condition of sugar cane hydrolyzed medium, carotenoid production of wild and its mutant were

examined during batch cultivation, the total carotenoid production was 8.823 and 8.562 mg/l by the mutant M1 and M2, respectively, while wild type yielded 6.895 mg/l of carotenoids.

The antioxidant activity of the yeast carotenoid extract was assessed by the 2, 2-diphenyl-1 picryl-hydrazil (DPPH) radical scavenging test antioxidant activities in linoleic acid system. Results showed that DPPH radical scavenging activities (%) were increased with increasing concentration of carotenoid extracts from 100 to 1100 μ g/ml and it was 91.82 \pm 0.12% in the presence of 1000 μ g/ml. The percent of peroxide inhibition from linoleic acid at 40 ^oC was 64.2 % in the presence yeast carotenoid extract, while it was 73.51 and 68.71 % for BHT and TBHQ, respectively, after 12 days.

The potential application of the yeast carotene extracts in sun flower oil as antioxidant and in hard candy and gelatine jellies as a natural colour was evaluated. Lower levels of carotene extract (50 and 100 ppm) had an antioxidant effects on the stability of sunflower oil, which had induction periods of 8.40 and 8.75 hours, respectively. The hard candy and gelatine jellies prepared with carotene extract at level 1 and 2 mg/100 g had the highest values of color, appearance and overall acceptability in comparing with those prepared by adding 0.05 and 0.5 mg/100 g.

Key Words:

Isolation, Yeasts, Carotenoids, *Rhodotorula glutinis*, Agro food processing wastes, UV mutagenesis, Antioxidant activity, Sun flower oil, hard candy and gelatine jellies.

CONTENTS

Title	Page	
LIST OF TABLES	VIII	
LIST O FIGURES		
LIST OF ABREVIATION	XVI	
1.INTRODUCTION	1	
2- REVIEW OF LITERATURE	4	
2.1. Carotenoids	4	
2.2. Carotenoids sources	4	
2.2.1. Fruits & vegetabables	5	
2.2.2. Algae	5	
2.2.3. Bacteria	7	
2.2.4. Fungi	8	
2.2.5. Yeast	9	
2.2.5.1. Genenral occurrence of Rhodotorula	10	
2.2.5.2. Isolation and identification of <i>Rhdotorula</i> SPP.	10	
2.2.5.3. Biosynthesis of carotnoid by yeasts	13	
2.2.5.3.1. Formation of isopenthyl pyrophosphate (IPP)	13	
2.2.5.3.2. Formation of phytoene	13	
2.2.5.3.3. Cyclization:	14	
2.2.5.4. Improvement of carotenoids production by either mutation,	17	
stress-induced carotenoid or by using recombinant DNA.		
2.2.5.4.1. Mutation	17	
2.2.5.4.2. Stress-induced carotenoid	17	
2.2.5.4.3. Recombinant DNA technology.	18	
2.3. Microbial fermentation processes for carotenoid production		
2.3.1. Fermentation medium	19	
2.3.1.1. Sugar cane bagasse	19	
2.3.1.1.1. Chemical composition of sugar cane bagasse	19	
2.3.1.1.2. Acid hydrolysis of sugar cane bagasse	20	
2.3.1.1.3. The use of sugar cane bagasse for production of useful		
products		

2.3.1.2. Corn cobs	21
2.3.1.2.1. Chemical composition of Corn cobs	22
2.3.1.2.2. Acid hydrolysis of Corn cobs	22
2.3.1.2.3. the use of corn cobs for production of useful products	23
2.3.1.3. Guava Pomace	23
2.31.3.1.1. Chemical composition of guava pomace	24
2.31.3.1.2. The use of guava pomace for production of useful	24
products	
2.4. Effect of cultivation condition on microbial growth and	24
carotenoids production by Rhodotorula	
2.4.1. Nutritional requirements	25
2.4.1.1. Carbon source	25
2.4.1.1.1. Carbon source of synthetic media	25
2.4.1.1.2. Carbon sources of natural media	27
2.4.1.2. Nitrogen source	30
2.4.1.3. Mineral salts	33
2.4.2. Environmental conditions	35
2.4.2.1. Incubation period	35
2.4.2.2. Initial pH-value	36
2.4.2.3. Incubation temperature	38
2.4.2.4. Aeration and/or agitation	39
2.4.2.5. The light	41
2.5. Extraction, separation and determination of carotenoids	43
2.5.1. Extraction of carotenoide	43
2.5.2. Separation and determination of carotenoids	43
2.6. Function of carotenoids	44
2.6.1. as provtitamin A	44
2.6.2. Antioxidant activity of carotenoid	45
2.7. Role of carotenoids in preventing degenerative diseases in	48
humans	
2.8. Technological Application of carotenoid compounds	48
3-MATERIALS AND METHODS	52

3.1 Materials	52
3.1.1. Sample collection	52
3.1.2. Raw materials of agro-food industrial wastes	52
3.1.3. Culture media:	52
3.1.3.1. Yeast and malt extract agar medium (YM agar)	52
3.1.3.2. Liquid basal medium	53
3.1.3.3. Potato dextrose agar (PDA) medium	53
3.1.3.3. Malt extract agar (MEA) medium	53
3.1.3.3. Acetate agar medium	54
3.1.3.4. Calcium carbonate agar medium	54
3.1.3.5. Urea rapid broth	54
3.1.3.6. Liquid yeast nitrogen base medium (LYNB)	55
3.1.3.7. Liquid yeast carbon base medium (LYCB)	56
3.1.3.8. Vitamin-free yeast base medium	56
3.1.4. Chemicals and reagents	57
3.15. Candy and Jelly ingredients	58
3.2 Methods	58
3.1.1.1. Isolation of yeasts	58
3.2.1. Identification of isolated yeasts	59
3.2.1.1. Morphological characterization	59
3.2.1.1.1. Shapes	59
3.2.1.1.2. Formation of pseudo-hypha or true hypha.	59
3.2.1.1.3. Formation of ballistospores	59
3.2.1.1.4. Microscopical examination for ascospores:	60
3.2.1.2. Physiological and biochemical characterization	60
3.2.1.2.1. Fermentation of carbohydrate	60
3.2.1.2.2. Carbon assimilation	60
3.2.1.2.3. Nitrogen assimilation	60
3.2.1.2.4. Growth in vitamin free medium	61
3.2.1.2.5. Growth at different temperatures	61
3.2.1.2.6. Growth in the presence of high concentration of glucose	61
and salt	

3.2.1.2.7. Acid production from glucose	61
3.2.1.2.8. Production of extra-cellular starch-like compounds	61
3.2.1.2.9. Cycloheximide test	61
3.2.1.2.10. Diazonium Blue B (DBB) test	62
3.2.1.2.11. Urea hydrolysis	62
3.3. Preparation of agro food industrial waste hydrolysate	61
3.3.1. Raw materials of agro-food industrial wastes	62
3.3.2. Acid hydrolysis of agro-food industrials wastes	62
3.3.3. Chemical composition analysis	63
3.3.4.6. Determination of total hydrolysable carbohydrate:	63
3.3.4.7. Determination of fiber fractions	63
3.3.4.7.1. Determination of neutral-detergent fiber (NDF)	63
3.3.4.7.2. Determination of acid-detergent fiber (ADF)	64
3.3.4.7.3. Determination of acid-detergent lignin(ADL)	64
3.3.4.7.4 Determination of cellulose	65
3.3.7.5. Determination of hemicellulose	65
3.4. Cultivation of selected isolated yeasts for carotenoid production	65
3.4.1. Preparation of inoculum	65
3.4.2. Batch cultivation in shake flasks: using standard medium	66
(Liquid basal medium)	
3.4.3. Optimization of medium ingredients and growth parameters for	66
the production of carotenoids by the isolated yeast (PY1)	
3.4.3.1. Carbon sources	66
3.4.3.2. Nitrogen sources	67
3.4.3.2. Mineral salts	67
3.4.3.3. Initial pH	67
3.4.3.4. Incubation temperature	68
3.4.3.4. Agitation (aeration)	68
3.4.3.5. Incubation period	68
3.5. Analytical methods:	68
3.5.1. Determination of pH values	68
3.5.2. Total reducing sugar (TRS) content	68

 3.5.4. Extraction of carotenoids 3.5.5. Carotenoid analysis 3.6. UV Mutagenesis 3.7. Evaluation of antioxidant activity of carotenoids extraction from yeast 3.7.1. Free radical scavenging activity (DPPH test) 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	 69 69 70 71 71 71 71 73 73 73 73 73
 3.5.5. Carotenoid analysis 3.6. UV Mutagenesis 3.7. Evaluation of antioxidant activity of carotenoids extraction from yeast 3.7.1. Free radical scavenging activity (DPPH test) 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	 70 71 71 71 71 73 73 73 73
 3.6. UV Mutagenesis 3.7. Evaluation of antioxidant activity of carotenoids extraction from yeast 3.7.1. Free radical scavenging activity (DPPH test) 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	 71 71 71 71 73 73 73 73
 3.7. Evaluation of antioxidant activity of carotenoids extraction from yeast 3.7.1. Free radical scavenging activity (DPPH test) 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	 71 71 71 73 73 73
 yeast 3.7.1. Free radical scavenging activity (DPPH test) 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	71 71 73 73 73
 3.7.1. Free radical scavenging activity (DPPH test) 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	71 73 73 73
 3.7.2. Determination of the antioxidant activity in linoleic acid system 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	71 73 73 73
 3.8. Technological methods 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	73 73 73
 3.8.1. Effect of carotenoids as natural antioxidant agent on the stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	73 73
 stability of sunflower oil 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	73
 3.8.1.1. Preparation of the sample 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	
 3.8.1.2. Determination of oxidative stability 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	
 3.8.2. Application of carotenoids as natural colorant agent in jelly and sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	73
 sugar confrctionary processing 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	
 3.8.2.1 Jelly processing 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	75
 3.8.3.2. Hard candy processing 3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary 3.9. Statistical analysis 4. RESULTS AND DISCUSSION 	
3.8.4. Oraganoleptic evaluation of jelly and sugar confectionary3.9. Statistical analysis4. RESULTS AND DISCUSSION	75
3.9. Statistical analysis 4. RESULTS AND DISCUSSION	75
4. RESULTS AND DISCUSSION	76
	76
4.1. Proximate chemical composition of food wastes	77
	77
4.2. Acid hydrolysis of food wastes	78
4.3. Selection and characterization of carotenoid-producing yeasts	82
4.4. Effect of cultivation condition on microbial growth and	91
carotenoids production by R. glutins:	
4.4.1. Nutritional requirements	91
4.4.1.1. Carbon source	91
4.4.1.1.1. Effect of glucose as a carbon source in synthetic medium	92
4.4.1.1.2. Carbon sources of natural media	96
4.4.1.1.2.1. Effects of different TRS concentrations from guava	96
pomace hydrolysate on the production biomass and total carotenoids	
by R. glutinis	

4.4.1.1.2.2. Effects of different TRS concentrations from sugar cane 99 bagasse hydrolysate on the production biomass and total carotenoids by *R. glutinis*

4.4.1.1.2.3. Effects of different TRS concentrations from corncobs 101 hydrolysate on the production biomass and total carotenoids by *R*. *glutinis*

4.4.1.2. Effect of nitrogen source 108

.4.1.2.1. Effect of 1 % nitrogen source on the production biomass and 108 total carotenoids by *R. glutinis* on glucose medium

4.5.1.2.2. Effect of 1 % nitrogen source on the production biomass 112 and total carotenoids by *R. glutinis* on guava pomace hydrolysate medium.

4.5.1.2.3. Effect of 1 % nitrogen source on the production biomass 116 and total carotenoids by *R. glutinis* on sugar cane bagasse hydrolysate medium.

4.5.1.2.4. Effect of 1 % nitrogen source on the production biomass 119 and total carotenoids by *R. glutinis* on from corncobs hydrolysate medium.

4.4.1.3. Effect of minerals source 124

4.4.1.3.1. Effect of 0.2 % mineral salts on the production biomass and 124 total by *R. glutinis* on glucose medium.

4.4.1.3.2. Effect of 0.2 % mineral salts on the production biomass and 128 total carotenoids by *R. glutinis* on guava pomace hydrolysate medium

4.4.1.3.3. Effect of 0.2 % mineral salts on the production biomass and 131 total carotenoids by R. glutinis on sugar cane bagasse hydrolysate medium

4.4.1.3.4. Effect of 0.2 % mineral salts on the production biomass and 135 total carotenoids by R. glutinis on 3 % TRS from corncobs hydrolysate

4.4.2	. Environmental conditions	139

4.4.2.1. Effect of incubation period 139

4.4.2.2. Effect of initial pH-value	145	
4.4.2.3. Effect of incubation temperature		
4.4.2.4. Effect of shaking rates		
4.5. Abssorption spectrum and identification of the extractable		
carotenoids from R. glutinis		
4.5. Carotenoid production improvement of <i>R</i> glutinis by UV	167	
mutagenesis		
4.6. Carotenoid and biomass production by the parent <i>R</i> glutinis and	168	
its mutant in sugar cane baggase medium		
4.7. Antioxidant activity of yeast carotenoid extract	169	
4.7.1. Antioxidant activity in linoleic acid system		
4.7.2. Scavenging effect on DPPH radical		
4.8. Potential application of some yeast carotenoid extract in foods.		
4.8.1. Effect of addition of yeast carotenoid extract on oxidative		
stability of sunflower oil		
4.8.2. Effect of adding different levels of carotenoids extracted from	175	
<i>R</i> glutinis as a natural color on sensory evaluation of hard candy		
4.8.3. Effect of using different levels of carotenoids extracted from <i>R</i>		
glutinis as a natural color on sensory evaluation of gelatine jellies		
5. SUMMARY	179	
7. REFERENCES	189	
9. ARABIC SUMMARY		

XVI

LIST OF APPRIVIATIONS

%	Percentage
°C	Centigrade degree
μg	Microgram
ABTS ^{.+} radical	2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)
ADF	Acid-detergent fiber
ADL	Acid-detergent lignin
ANOVA	Analysis of Variance
BHT	Butylated hydroxytoluene
ССН	Corn cobs hydrolyzed
CFU	Colony-forming unit
CTAB	Acetyl trim ethyl ammonium bromide
DBB	Diazonium blue B
Dept	Department
DMAPP	Dimethylallyl pyrophosphate
DMPO	5,5-dimethyl pyrroline N-oxide
DPA	Diphenylamine
DPPH	2,2-diphenyl-1-picrylhydrazyl
e.g	For example
$E_{1\mathrm{cm}}^{1\%}$	Extinction coefficient
EDTA	Ethylene diamine tetracetate
EMS	Ethyl methyl sulphonat
et al	And others
FAO	Food and Agriculture Organization
Fig.	Figure
FPP	Farnesyl pyrophosphate
g	Gram
GGPP	Geranyl geranyl pyrophosphate
GPH	Guava pomace hydrolyzed
GRAS	Generally recognized as safe
h	Hour
HMG	β-hydroxy-β-methyl glutaryl CoA

HPLC	High performance liquid chromatography
i.e	That is (id est)
IPP	Isopenthyl pyrophosphate
kg	Kilogram
1	Liter
LDL	Low density lipoprotein
log	Logarithm
lx	Lux
LYCB medium	Liquid yeast carbon base medium
LYNB medium	Liquid yeast nitrogen base medium
MEA medium	Malt extract agar
mg	Milligram
min	Minute
ml	Millilitre
mm	Millimetre
MPa	Mega pixel
mv	Mill volt
MVA	Mevalonic acid
NDF	Neutral-detergent fiber
nm	Nano meter
NSG	Nitrosoguanidine
NTG	N-methyl-N'-nitro-N-nitrosoguanidine
OIP	Oxidation induction period
OSI	Oil stability index
PBN	α-phenyl butyl nitrone
PDA medium	Potato dextrose agar
PDA spectrum	Photodiode array
ppm	Part per million
PY1	Yeast isolated from tomato leaves
PY2	Yeast isolated from maize leaves
PY3	Yeast isolated from cotton leaves
PY4	Yeast isolated from soybean leaves

XVIII

PY5	Yeast isolated from Sunflower leaves
rpm	Revaluation per minute
RSUO	Oxidative stability of refined sunflower oil
SAS	Statistical Analysis System
SCBH	Sugar cane bagasse hydrolyzed
Sci	Science
SDS	Sodium dodecyl sulfate
sp.	Specie
TBHQ	Tertiary butylhydroquinone
TLC	Thin layer chromatography
UV	Ultra violate
v/v	Volume per volume
vvm	Gas volume flow per unit of liquid volume per minute
W/V	Weight/volume
YM agar	Yeast malt extract agar
YM broth	Yeast malt extract broth
α	Alpha
β	Beta
γ	Gamma
3	Epsilon