ABSTRACT

Ihab Ibrahim Sadek El-Sayed: Effect of Some Shading and Ventilation Treatments on Tomato Plants Grown in Perlit Culture. Unpublished Ph.D. Dissertation, Department of Horticulture, Faculty of Agriculture, Ain Shams University 2009.

The experiment was performed in the summer season of 2005 and 2006 at research greenhouse of the Central Laboratory for Agricultural Climate (CLAC), Dokki location. The study was conducted in single type unheated plastic house of 270 m² (9m width, 30m length and 3.2m height). Tomato El-Karnak F1 hybrid was used, to investigate the ventilation and shading of tomato plants under El-Dokki conditions. Four treatments were used i.e., side ventilation, 60% shading, side ventilation plus 60% shading and check, (common plastic house). Results indicated that the application of side ventilation plus 60% shading treatment was the most effective in reducing maximum and minimum of air temperature, relative humidity, radiation, solution and media temperatures followed by side ventilation, whereas, the highest value of maximum and minimum of air temperature, relative humidity, radiation, solution and media temperatures were observed in check treatment throughout the two growing seasons. In addition, side ventilation plus 60% shading treatment produced the tallest plants and the highest number of leaves per plant, leaf area per plant, root length and fresh and dry weight of leaves and stem, while, stem diameter and fresh and dry weight of root were increased by check treatment. Moreover, number of clusters/plant, chlorophyll in leaves and percent of nitrogen and potassium in leaves, stem and root were increased by application side ventilation plus 60% shading treatment, while, percent of phosphorus and total carbohydrates in leaves, stem and root increased with side ventilation treatment. Also, fruit characters such as average weight, volume and diameter were gave highest values with side ventilation plus 60% shading treatment except, firmness was not affected by tested factors. Chemical components of fruits, i.e., T.S.S, ascorbic acid, total, - reducing - and non-reducing sugars and total carbohydrates were increased with side ventilation treatment except ascorbic acid content was not affected by all treatments. The highest productivity for both early and total yields were obtained when plants were grown under side ventilation plus 60% shading treatment, followed by side ventilation treatment, while check treatment gave the lowest values.

Key words: Greenhouse, Protected cultivation, Tomato, Shading, Side ventilation, Soilless culture, Climatic conditions, Flowering.

CONTENTS

	LIST OF TABLES	iv
	LIST OF FIGURES	vii
1.	INTRODUCTION	1
2.	REVIW OF LITRUTURE	4
2.1.	Substrate culture	4
2.2.	Effect of ventilation	5
2.2.1.	Effect of ventilation on climatic conditions	6
2.2.2.	Effect of ventilation on vegetative growth	10
2.2.3.	Effect of ventilation on yield and its components	10
2.2.4.	Effect of ventilation on chemical composition	12
2.3.	Effect of shading	12
2.3.1.	Effect of shading on climatic conditions	12
2.3.2.	Effect of shading on vegetative growth	13
2.3.3.	Effect of shading on yield and its components	15
2.3.4.	Effect of shading on chemical composition	19
3.	MATERIALS AND METHODS	21
3.1.	Experimental layout	21
3.1.1.	Nursery materials	21
3.1.2.	Transplanting	21
3.1.3.	The experimental treatment	21
3.1.4	The plastic house preparation	22
3.1.5.	Description of cultivation system	22
3.1.6.	Substrate material	22
3.1.7.	Irrigation system	25
3.1.8.	Drainage system	25
3.1.9.	Nutrient solution	25
3.1.10.	Experimental design	26
3.3.	Data recorded	26
3.3.1.	Climatic conditions	26

3.3.3.	Flowering	27
3.3.4.	Yield and its components	27
3.3.4.1.	Fruit characters	27
3.3.4.2.	Early and total yield	27
3.3.5.	Chemical properties	27
3.3.5.1.	Total chlorophyll reading	27
3.3.5.2.	Nitrogen	27
3.3.5.3.	Phosphorus	27
3.3.5.4.	Potassium	27
3.3.5.5.	Total soluble solids (T.S.S)	27
3.3.5.6.	Ascorbic acid content	28
3.3.5.7.	Total carbohydrates	28
3.3.5.8.	Total, reducing and non reducing sugars	28
3.3.5.9.	Physical properties of substrate	28
3.4.	Statistical analysis	28
4.	RESULTS AND DISCUSSION	29
4.1.	Climatic data	29
4.1.1.	Maximum air temperature	29
4.1.2.	Minimum air temperature	29
4.1.3.	Maximum relative humidity	32
4.1.4.	Minimum relative humidity	32
4.1.5.	Maximum radiation	35
4.1.6.	Minimum radiation	35
4.1.7.	Maximum temperature of nutrient solution	38
4.1.8.	Minimum temperature of nutrient solution	38
4.1.9.	Maximum media temperature	38
4.1.10.	Minimum media temperature	43
4.2.	Vegetative growth	43
4.2.1.	Plant height	43
4.2.2.	Number of leaves per plant	45
4.2.3.	Leaf area per plant	46
4.2.4.	Stem diameter	47

4.2.5.	Root length	48
4.2.6.	Fresh weight of leaves	48
4.2.7.	Dry weight of leaves	49
4.2.8.	Fresh weight of stem	50
4.2.9.	Dry weight of stem	51
4.2.10.	Fresh weight of root	52
4.2.11.	Dry weight of root	53
4.3.	Flowering	54
4.3.1.	Number of clusters/plant	54
4.4.	Chemical component	55
4.4.1.	Chemical component of leaves	55
4.4.1.1.	Total chlorophyll	55
4.4.1.2.	Nitrogen, phosphorus and potassium	56
4.4.2.	Chemical component of stem	58
4.4.2.1.	Nitrogen, phosphorus and potassium	58
4.4.3.	Chemical component of root	59
4.4.3.1.	Nitrogen, phosphorus and potassium	59
4.4.4.	Carbohydrates in leaves stem and root	60
4.5.	Yield and its components	62
4.5.1.	Fruit characters	62
4.5.2.	Chemical components of fruits	62
4.5.2.1.	Total soluble solid (T.S.S.) and ascorbic acid	
	content	62
4.5.2.2.	Total, reducing and non-reducing sugars	64
4.5.2.3.	Total carbohydrates	64
4.5.3.	Early and total yield	67
5.	SUMMARY AND CONCLUSION	69
6.	REFERENCES	74
7.	ARABIC SUMMARY	