PHYSIOLOGICAL AND HISTOLOGICAL STUDIES ON SALT TOLERANCE OF PEAR SEEDLINGS GROWN ON DIFFERENT ROOTSTOCKS

Mohamed Aly Mohamed Soliman

ABSTRACT

This work has been carried out during 2005 and 2006 seasons on "LeConte" pear seedlings budded on four rootstocks. The present work was placed in two separate experiments, the first was carried out at the Experimental Farm of the Faculty of Agric. Kafrelsheikh Univ. to study the response of "LeConte" pears on four rootstocks, P. communis, P. beutilifolia, P. calleryana and quince to the irrigation with saline water (0, 1000, 1500 and 2000 ppm of NaCl plus CaCl₂ in a mixture of 1: 1 by weight) and the role of rootstocks in increasing salt tolerance of the scion. The second was conducted during 2005 and 2006 seasons on one year old "LeConte" pear budded on the same mentioned four rootstocks to study the possibility of using liquid organic fertilizer (as a soil and soil + foliar spray at 3000 ppm with Actosol which contain 2.9% humic acids and 10-10-10 NPK) and some growth regulators (Amcotone and PBZ at 50 ppm for each of them & GA₃ at 100 ppm as foliar spray) to reduce the harmful effects of salinity in soils which suffering from salinity trees were grown at Research Station Agricultural Sakha Farm, Kafr El-Sheikh Governorate. The results could be summarized as follows: salinity treatments significantly decreased growth parameters, nutritional status, leaf water content, leaf chlorophyll content, spongy tissue thickness and xylem rows ion vascular bundle of leaf and cortex thickness, diameter of vasc. cylinder, No. of arches and No. of vessels/arch of stem. On the other hand, salinity treatments significantly increased toxic ions, leaf praline content, osmotic pressure, thickness of both cuticle and epidermis layers of the two leaf surfaces as well as palisade tissue thickness, and thickness of epidermal cell and pith diameter of stem. Salt tolerance of P. beutilifolia and P. calleryana rootstocks was higher followed by P. communis, while the lower salt tolerance was recorded by quince rootstock. Humic acid and the growth regulator treatments markedly minimized the harmful effects of salinity and enhanced pear salt tolerance leading to enhancing the morphological, physiological and anatomical characteristics.

CONTENTS

1.	Page INTRODUCTION
2	DEVIEW OF LITEDATUDE
2.	REVIEW OF LITERATURE
3.	MATERIALS AND METHODS41
4.	49 4.1. Exp. I:.Effect of salinity on morphological, physiological and histological characteristics of pear seedlings budded on different rootstocks
	4.1.1. Morphological studies 49 4.1.1.1. Stem growth 49 4.1.1.2. Lateral shoots growth 53 4.1.1.3. Leaf characters 57 4.1.1.4. Fresh weight 61 4.1.1.5. Dry weight 65
	4.1.2. Physiological studies 70 4.1.2.1. Total water content 70 4.1.2.2. Osmotic pressure 71 4.1.2.3. Leaf proline content 74 4.1.2.4. Leaf chlorophyll content 78
	4.1.3. Leaf mineral content

	4.1.4.	Anatomi	cal studies	95
		4.1.4.1.	Leaf anatomy	95
		4.1.4.2.	Stem anatomy	99
	4.2. Exp. II	. Effect o	f liquid organic fertilizer and som	ne
			regulators on Morphologica	
		physiolo	gical and anatomical characteristics	of
		LeConte	pear grown on different rootstocks	104
	4.2.1.	Vegetativ	ve growth	104
		4.2.1.1.	Stem growth	104
		4.2.1.2.	Lateral shocks growth	108
		4.2.1.3.	Leaf characters	112
		4.2.1.4.	Leaf fresh and dry weights	118
	4.2.2.	Physiolo	gical studies	123
		4.2.2.1.	Total water content	123
		4.2.2.2.	Osmotic pressure	126
		4.2.2.3.	Leaf proline content	128
		4.2.2.4.	Leaf chlorophyll content	132
	4.2.3.	Leaf min	eral content	
		4.2.3.1.	Nitrogen, phosphorus and potassiun	n 134
		4.2.3.2.	Magnesium and calcium	139
		4.2.3.3.	Sodium and chloride	142
		4.2.3.4.	Leaf content of Fe, Zn and Mn	146
	4.2.4.	Anatomi	cal studies	
		4.2.4.1.		
		4.2.4.2.	Liquid organic fertilizer and som	ıe
			growth regulators effects	156
5.	SUMMAR	Y AND C	CONCLUSION	163
6.	REFEREN	ICES	•••••	169
7.	ARABIC S	SUMMAR	RY	