ABSTRACT

Azhar El-Warsh El-Said Mohamed.

Department of Agricultural Engineering, Faculty of Agriculture, Alexandria University

Mechanical and Physiological Properties of Potato Tubers Related to

Storage Condition.

Advisor's Committee:

Prof. Dr.S. N. Soliman, Prof. Dr.A. Z. Shokr and Prof. Dr. A. S. Kassem

Potato crop is considered as one of the most important vegetable crops in Egypt, especially in the last decade, in which the Egyptian production of potato reached 2,5 million ton and the amount of exporting potato tuber reached 2.76 million tons in 2008. European Union is the most regions, which demand the Egyptian potato.

Potato crop is subjected to various types of different storage condition during storage. The effect of potato cultivars, storage condition, storage period, tuber size and load stress on potato tubers quality were valued.

The main objective of this research is to study the effect of traditional and cold storage condition on physiological and physical quality of potato tubers. The physiological measurements are moisture content, sugar content and respiration rate. The physical characteristics measurements are including dimensions, surface area, volume, spherisity, mass, particle and bulk density. The mechanical properties of fresh and stored potato tubers are conducted and including force deformation, penetration and creep tests. The measurements of dielectric properties of potato can help in predicting the internal condition and degree of deterioration of potato tubers.

Potato variety Lady Rosetta was selected as one of the most important commodity for chips industrials and for exporting, but it is very sensitive for handling and storage and specified by high specific density, high dry matter percent and law sugar content. One ton of fresh potato variety "Lady Rosetta" 500 kilograms for each of sandy soil and black soil cultivars were used.

The fresh received tubers were cleaned and the tubers which have cuts, skinning, splitting, rot, and greenish were discarded. The tubers were then weighed, registered by numbers, recorded and then graded into three sizes based on its mass.

Potato tubers were cured for 2 weeks at 15 C^o and 90% R.H., then the potatoes were divided into two equal samples each of 250 kg of each cultivar for long term storage under aerated natural condition (Nawalla) and under cooling condition at 8 C^o and relative humidity of 85 %.

An Instron machine was used for stress-strain tests. Four creep apparatuses were developed using a digital micrometer which enable to feed the data into the computer and instantaneous reading of deformation with time at constant stress. Dielectric measurements including capacitance, and conductance, were measured using LCZ meter over a frequency range from 10 to 1000 kHz.

The results showed that there are a linear multiple regression relationships between mass loss percent, change of tuber dimensions percent, change of volumes percent, particle and bulk density and each of storage condition (cold and traditional temperature), storage periods up to 200 day, tubers mass and at different static load stress (0.0, 2.44 and 4.87 kPa) for each of sand and black soil cultivars.

Mass loss of tubers increases gradually with increasing storage time which reached (18.173, 17.300) percentage for cold storage and (30.648, 27.305) percentage for traditional storage for each of sand and black soil cultivars, respectively.

The changes percentage of length, width and thickness give the same trend with storage time, for cold storage were (8.267, 7.890), (10.498, 9.588) and (12.037, 10.826) respectively, and for traditional storage were (13.226, 12.802), (15.705, 14.787) and (20.033, 19.403), respectively.

The shrinkage of tubers volumes during storage periods directly proportion with storage time, for cold storage were (22.819, 23.200) and for traditional storage were (34.099, 30.894) respectively.

The particle density kg/m³ of potato tubers were increased directly with storage time, for cold storage were (1100.86, 1163.46) kg/m³ and for traditional storage were (1101.76, 1137.06) kg/m³ respectively.

Tubers bulk density kg/m³ was directly proportion with storage time. The tubers bulk density for cold storage were (609.053, 617.284) kg/m³, and for traditional storage were (611.284, 617.284) kg/m³ respectively.

Respiration rate (mg CO₂/kg.h) of fresh tubers is directly proportion with tuber specific surface area and inversely proportion with tuber mass for all cultivars, for sand soil fresh tubers was changed from 2.4964 up to 7.7679 with an average 5.631 mg CO₂/kg.h and for fresh tubers of black soil was changed from 2.513 up to 11.441 with an average of 7.774 mg CO₂/kg.h.

Sugar content (Brix) positively affected by each of type of soil, storage temperature, static load stress, storage time and tuber mass.

Penetration force (N) of fresh tubers was measured. The penetration force were ranged from 19.080 to 26.389 with an average of 22.306 for sand soil cultivars, while ranged from 18.246 to 32.785 with an average of 24.413 for black soil cultivars, using probe of 3.8 mm diameter.

Creep test optimal condition was suggested to use two parallel plates each of 2 cm diameter, and 2 kilograms load (62.45 kPa) during a duration time of 60 minutes for loading and 60 minutes for unloading, and was carried several times on the same tuber at different storage time. The creep curves were analyzed and the constants related to Burger rheological models were determined. For fresh potato tubers, all rheological model constants were slightly increased with tuber masse; rheological model constants of black soil cultivar were larger than that for sand soil cultivar. The time of retardation of the rheological model was found to be constant around 621 ± 5 seconds for each of sand and black soil cultivars.

Force-deformation tests of fresh potato tuber show that the small tubers have a more strength than that for big tubers for each soil cultivars. The fresh harvested tubers tend to be very brittle. Because of their brittleness, potato tubers tissues were cracked under compression test. The results appear that yield force, yield stress, resilience, initial modulus of elasticity and secant modulus of elasticity decreases gradually with increasing storage time. The result appears that yield strain, increases gradually with increasing storage time. Rupture force, rupture strain, rupture stress, and toughness decreases gradually with increasing storage time.

Dielectric properties test were conducted on fresh and stored tubers, for measuring of capacitance (Farad, f), and conductance (Siemens, S) over a range of frequencies from 10 to 1000 kHz. The measured value were used to calculate permittivity (f/m),

conductivity (S/m), relative permittivity, complex permittivity (S.sec/f), complex conductivity (f/m.sec) and dissipation factor or "loss tangent" (tan δ) of potato tuber.

The results showed that capacitance and relative permittivity decreases rapidly with increasing frequency. For cold storage sandy soil potato and at 120 and 200 days the values of capacitance were 0.0398 and 1.1939 at 0.0 load; 0.03356 and 0.4003 at 2.44 kPa and 0.0503 and 0.01886 at 4.87 kPa respectively. For black soil potato and at 120 and 200 days the values of capacitance were 0.02957 and 1.4165 at 0.0 load; 0.06772 and 0.06185 at 2.44 kPa and 0.05984 and 0.051826 at 4.87 kPa respectively. For traditional storage sandy soil potato at 120 days the values of capacitance were 0.02957 and 1.4165 at 0.0 load; 0.06772 and 0.06185 at 2.44 kPa and 0.05984 and 0.051826 at 4.87 kPa respectively. For traditional storage sandy soil potato at 120 days the values of capacitance was 0.0318 at 0.0 load; at 2.44 kPa was 0.03078 and at 4.87 kPa was 0.05688. For black soil potato at 0.0 load and at 120 days the values of capacitance was 0.01755; at 2.44 kPa was 0.017875 and at 4.87 kPa was 0.02673.

The conductance of stored sand soil potato at cold storage, and at 120 and 200 days were 0.02833 and 0.069753 at 0.0 load; 0.02109 and 0.06274 at 2.44 kPa and 0.01691 and 0.012849 at 4.87 kPa respectively. For traditional storage at 120 days the maximum conductance at 0.0 load was 0.03044; at 2.44 kPa was 0.027288 and at 4.87 kPa was 0.028267. For storage black soil potato at cold storage and at 120 and 200 days the values of maximum conductance at 0.0 load were 0.01929 and 0.10153; at 2.44 kPa were 0.0172 and 0.01486 and at 4.87 kPa were 0.01933 and 0.01502 respectively. For traditional storage at 120 days the values of conductance at 0.0 load was 0.02397; at 2.44 kPa were 0.023377 and at 4.87 kPa was 0.0172.

Complex permittivity and Complex conductivity were decreases with the increases of the storage time.

The dissipation factor Tan (δ) decreases gradually with increasing the storage time in cold storage.

The quality index Q was expressed as a percentage value of the ratio between conductance at high frequency to that at low frequency (GH/GL) for the stored tissue to that for the fresh tissue to indicate the degree of freshness.

The quality index Q decreases with the increasing of storage time, storage temperature and storage load stress. The results show that the effect of soil type on quality index is non significant. Mass loss look like other parameters is also inversely proportion with quality index.

The Quality Index Q value decreased with increasing the storage time this is a fairly good indication of the loss of freshness.

TABLE OF CONTENTS

	Page
AKNOWLEDGMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	xiii
ABSTRACT	xvii
1. INTRODUCTION	1
2.REVIEW OF LITERATURE	3
2.1.Raw Material	3
2.1.1.Potato Production	3
2.1.2.Potato Cultivars	3
2.1.3.Potato Varieties	6
2.1.4.Tubers	6
2.1.5.Horticultural Maturity Indices	6
2.1.6.Choice of varieties.	6
2.2.Potato Storage	7
2.2.1. Cold and Traditional Temperature Chambers	10
2.2.2.Storage losses.	12
2.2.2.1.Weight losses	12
2.2.2.2. Sprouting	15
2.2.2.3. Black heart	15
2.2.2.4. Physiological properties of potato relation to storage	16
2.2.2.4.1.Respiration	16
2.2.2.4.2Transpiration.	20
-	0.1
2.2.2.4.2.1. Size, Shape and Surface Area of the Commodity	21
2.2.2.4.2.2. Skin and Tissue Permeability	22
2.2.3. Optimum Storage Conditions.	22
2.2.3.1 Sorting and grading	22
2.2.3.2 Curing.	23
2.2.4. Physical Factors	25
2.2.4.1. Temperature.	25
2.2.4.2. Relative Humidity	26
2.2.4.3. Light	26
2.2.4.4. Sanitation	26
2.2.4.5. Handling	26
2.2.4.6. Time	26
	26
2.3.1 Physico-chemical properties of potato	28
2.3.1.1. Specific gravity	28
2.3.1.1.1 Loss of dry matter during storage	29
2.3.1.1.2. Relationship between specific gravity and dry matter	29
	30
2.3.1.3.Sugar	30
2.3.1.4.Environmental Conditions and Potato Processing	31

2.3.1.5. Yield, dry matter content, and quality of potatoes	31		
2.3.1.5.1. Cultivar	31		
2.3.1.5.2. Soil Type	32		
2.3 .1.6. Quality Evaluation	33		
2.3 .1.7.Physiological Basis of Texture	34		
	35		
	35		
2.3.1.7.3. Cell Turgor	36		
2.3.1.7.4. Cell Rupture	37		
2.3.1.7.5 Tissue Strength	38		
2.3.2. Physical Characteristics of Potato Tubers			
2.3.2.1 Shape and size			
1			
2.3.2.3. Volume of potato	41 41		
2.3.2.4. Particle density	42		
2.3.2.5. Moisture Content.	42		
	42		
2.3.3. Mechanical Properties of Potato Tuber			
2.3.3.1. Mechanical Damage Due to handling	44		
2.3.3.2. Mechanical damage aspects.	45		
2.3.3.2.1. Sensory Evaluation of Texture	46		
2.3.3.2.2. Instrumental Measurement of Texture	46		
2.3.3.2.3. Elastic and Viscoelastic Behavior	47		
2.3.3.3. Mechanical properties under loading	49		
2.3.3.1. Force Deformation Tests	52		
2.3.3.3.2. Creep Test	56		
2.3.3.3. Puncture Tests	60		
2.3.4. Dielectric properties	66		
2.3.4.1.Background and theoretical concepts	75		
2.3.4.1.1. Dielectric Properties of Tissues	75		
2.3.4.1.2 Permittivity	75		
2.3.4.1.3 Dielectric Constant.	75		
2.3.4.1.4 Dielectric	75		
2.3.4.1.5. Electrical susceptibility	75		
2.3.4.2.Measurement of the electrical conductivity	76		
2.3.4.3.Measurement of the electric susceptibility and permittivity	78		
3. MATERIALS AND METHODS.	83		
3.1. Storage Chambers	83		
3.1.1. Traditional Temperature Chambers	83		
3.1.2. Refrigeration Chambers	84		
3.3.1.Physiological Characteristics	87		
3.3.1.1. Moisture Content.	87		
	88		
3.3.1.2. Sugar Content:			
3.3.1.3. Respiration Rate Test.	89		
3.3.2. Physical Characteristics.	90		
3.3.2.1. Tuber Weight.	90		
3.3.2.2. Tuber Dimensions	90		

3.3.2.3.Particle density	92
3.3.2.4. Bulk density	. 93
3.3.2.5. Surface Area of tuber	
3.3.2.6.Tuber sphericity	. 94
3.3.3. Mechanical Properties	95
3.3.3.1.Creep Test	95
3.3.3.1.1. Calibration of creep apparatus	101
3.3.3.1.2. Rheological Model	103
3.3.3.1.3. Creep test procedure	105
3.3.3.2. Force-deformation test	106
3.3.3.2.1. Calibration of Instrone Machine	106
3.3.3.2.2. Force- Deformation Test Procedure	109
3.3.3.3. Penetration Test	110
3.3.3.1. Penetration Test Procedure	110
3.3.4. Dielectric Test.	111
3.3.4.1. Measuring electrodes	112
3.3.4.2. Measurements of Dielectric	112
3.3.5.3 Quality factor (Q)	
4. RESULTS AND DISCUSSION	
4.1. Fresh Condition Of Lady Rosetta Potato Tubers	
4.1.1. Physical Characteristics.	114
4.1.1.1. Tubers mass	114
4.1.1.2. Tubers dimensions	
4.1.1.3. Tuber volume	
4.1.1.4. Particle density	
4.1.1.5. Bulk density	
4.1.1. 6. Tuber Sphericity	
4.1.1.7. Tuber Surface Area	
4.1.2.PhysiologicalCharacterstics	123
4.1.2.1. Respiration Rate Test:	
4.1.2.2.Moisture Content and Sugar Content.	
4.1.3. Mechanical Properties.	131
4.1.3.1. Penetration Test.	
4.1.3.2. Creep Test	131
4.1.3.3. Force Deformation Test.	
4.1.4. Dielectric Properties.	149
4-2- Potato Tubers Quality at Different Storage Conditions	160
4.2.1. Physical Characteristics.	160
4.2.1.1. Tubers Mass	160
4.2.1.2. Tubers dimensions.	165
4.2.1.3. Tuber volume	169
4.2.1.4 Particle density.	171
4.2.1.5. Bulk density	173
4.2.2. Physiological Characteristics.	173
4.2.2.1. Respiration rate test.	175
4.2.2.1. Respiration face test	175
4.2.3. Mechanical Properties	182
4.2.3.1. Penetration test.	182
	104

4.2.3.2. Creep test	185
4.2.3.3. Force Deformation test	197
4.2.4. Dielectric Properties of Stored Tubers	213
4.2.4.1 Capacitance	213
4.2.4.2 Conductance	220
4.2.4.3 Relative Permittivity	227
4.2.4.4 Conductivity	230
4.2.4.5 Complex Permittivity	233
4.2.4.6 Complex Conductivity	236
4.2.4.7 Dissipation Factor Tan (δ)	239
4.2.4.8 Quality Index	253
5. SAMURRY AND CONCLUSION	256
6. REFERENCES	266
7. APENDIXECS	Ι
7. APENDIXECS Appendix (A): Creep sensor program	I I
	-
Appendix (A): Creep sensor program	I
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil)	I IV
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil)	I IV IX
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil)	I IV IX X
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil) Appendix (C3): Capacitance	I IV IX X XI
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil) Appendix (C3): Capacitance Appendix (C4): Conductance	I IV IX X XI XVIII
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil) Appendix (C3): Capacitance Appendix (C4): Conductance Appendix (C5): Relative Permittivity	I IV IX X XI XVIII XVIII XXIX
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil) Appendix (C3): Capacitance Appendix (C4): Conductance Appendix (C5): Relative Permittivity Appendix (C6): Dielectric Conductivity Appendix (C7): Complex Permittivity Appendix (C8): Complex Conductivity	I IV IX X XI XVIII XXIX XXIX
Appendix (A): Creep sensor program Appendix (B): Physical characteristics Appendix (C1): Data of dielectric properties (Sandy soil) Appendix (C2): Data of dielectric properties (Black soil) Appendix (C3): Capacitance Appendix (C4): Conductance Appendix (C5): Relative Permittivity Appendix (C6): Dielectric Conductivity Appendix (C7): Complex Permittivity	I IV IX X XI XVIII XXIX XXXII XXXII XXXV

LIST OF SYMBOLS

Symbol	Meaning, Unit
V _{tuber}	Tuber volume, cm ³ .
M_t	Weight of (Tubers + glass vessel + seed) (kg).
M_s	Weight of Seeds
M_{g}	Weight of the empty glass vessel (kg).
V _g ,	empty glass vessel volume, cm ³
\mathbf{V}_{s}	Volume of seeds, cm ³ .
$ ho_{s}$	density of the seeds
A_P	The largest projected area of object in natural rest position.
A_c	area of smallest circumscribing circle.
r	the radius of curvature of the sharpest corner.
R	the radius of the maximum inscribed circle
n	the total number of corners summed in numerator
d _e	The diameter of a sphere of the same volume as the object.
d _c	Diameter of the smallest circumscribing sphere.
di	Diameter of largest inscribed sphere.
M_{f}	Weight of (tubers + box), kg.
M_{i}	Weight of empty box, kg.
V_i	Empty box volume, m ³ .
MC _{wb} %	Moisture content, percentage.
Mo	Fresh mass of sample before drying, g.
M ₁	Dry mass of sample after drying, g.
	Mass of Potato tuber at measured it, g
$\Delta M, \% $ $(L^*W^*Th)^{\frac{1}{3}}$	Change of Weight to sample of potato geometric mean diameter, cm.
d _C	major diameter, cm.
ML, %	Mass loss of tuber.
M.C	Moisture Content
S.C.	Sugar Content, Brix
Т	Storage Temperature, ⁰ C
t	Storage Time, day
SL	Static Load stress, kPa
ST	Soil type, 1 for sand or 2 for black soil.
L ΔL, %	Length of Potato Tuber, mm. Change of Length of Potato Sample
ΔL, 70 W	Width, mm.
ΔW, %	Change of Width of Potato to Sample.

Th	Thickness, mm.
$\Delta Th, \%$	Change of Thickness of Potato Sample
V	Tuber volume, cm ^{3.}
$\Delta V, \%$	Shrinkage of Volume of Potato Sample
$\rho_{\rm P}$	Particle Density of Potato Sample, kg/ m ³
-	Bulk Density of Potato Sample, kg/ m ³
ρ _B SG	specific gravity
DM	dry matter
PF	Penetration Force, N.
PS	penetration stresses, MPa.
3	Total strain.
ε	Strain in free spring (Maxwell group).
ε _B	Strain in Kelvin group.
С С	Strain in free dashpot (Maxwell group).
σ₀	Total stress (constant stress), MPa
	stress affecting on free spring, MPa.
σΑ	stress affecting on Kelvin group, MPa.
$\sigma_{\rm B}$	stress affecting on free dashpot, MPa.
σ _C	Instantaneous modulus of elasticity, MPa.
E _o E _r	Modulus of Elasticity of Kelvin Model, MPa
μ_r	Coefficient of Viscosity of Kelvin Model, (MPa.sec)
	Viscosity coefficient of free dashpot, (MPa. Sec)
μ _o ť	Time of creep, min.
D	plunger diameter, cm
F	force, kg
T _{ret}	retardation time, min.
E_1	Initial Modulus, MPa.
E_2	Secant Modulus, MPa.
F _r	Rupture Force, N
ε _r	Rupture Strain
σ_r	Rupture Stress, MPa.
$\epsilon_{ m Y}$	Strain of Yield Point
σγ	Stress at Yield Point, MPa.
WD _r	Toughness or Rupture Work Done, J
WD_Y	Resilience or Yield Point Work Done, J.
F _Y RR	Yield Force, N Pospiration rate, mg of CO ₂ / kg tubor, h
SSA	Respiration rate, mg of CO_2 / kg tuber. h. Specific surface area, cm^2/g
SA	Surface Area, cm ²
σΑ	Stress affecting on free spring, MPa.
σ _B	Stress affecting on Kelvin group, MPa.
	Stress affecting on free dashpot, MPa.
$\sigma_{\rm C}$	Strain at time t
ε (t)	
σ _o T	Constant stress, MPa.
T _{ret}	Retardation time, min.

t _c	Creep Time of the test, sec		
f	Frequency, Hz		
f	Farad		
C C	Capacitance of Sample, farad (f).		
G	Conductance of Sample, Siemens (S).		
ee	Permittivity, f/m		
eEo	Permittivity of Vacuum, f/m		
eɛ'	Relative Permittivity of Sample		
eσ	Dielectric Conductivity of Sample, S/m		
eɛ"	Complex Permittivity of Sample, S. sec/f		
eσ"	Complex Conductivity Sample, f/m. sec		
Tan δ	Dissipation Factor or loss tangent of Sample.		
eo*	complex conductivity		
Q%	Quality Index		
b	The blank titer ml.		
a	The sample titer ml.		
N E	Normality of the standardized acid		
L L*W*Th	Equivalent weight of CO ₂ . Tuber dimension, cm.		
M	Tuber mass, Kg.		
R^2	Determination coefficient.		
DYP	dynamic yield pressure		
MT	Magness-Taylor		
WVPD	water vapor pressure deficit		
TPA	texture profile analysis		
BM	basic mechanical		
VEB	Viscoelastic behavior		
UWW	The underwater weight		
CPR1	Central Potato Research Institute.		
CIPC	Isopropyl N-(3-chlorophenyl) carbamate		
CIP	International Potato Center		
PTM	Potato Tuber Moth		
NSP	National Seed Programme		
DS	Dielectric spectroscopy		
RF	radio frequency		
Δ	Change of parameter, %.		
m	meter		
Subscript			
S	For sand soil.		
b	For black soil.		
r	rupture		
Y	Yield		

р	Particle density
В	Bulk density
А	Probe (A)
В	Probe (B)