ABSTRACT

Dena Abbas Ahmed: Effect of Feed Contamination on the Productive Performance and Body Composition in Fish. Unpublished M.Sc.Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2010.

The experiment was carried out at the department of animal production, Faculty of Agriculture, Ain shams, University, Egypt. For a period of 12 weeks, using Nile tilapia (*Oreochromis niloticus*, 10 g average weight).

The objective of the present study is to determine the bioaccumulation of heavy metals in various organs of the fresh water fish exposed to heavy metal contaminated food system. The experimental fish was exposed to different concentrations of elements, mercury (Hg) and lead (Pb) for period of 70 days, Fish were divided into seven groups (treatments) each group was stocked into three aquaria and each contains 15 fish. The 1st treatment was fed diet without any element (control group), The 2nd treatment was feed diet contain with 0.5 mg/kg mercury, The 3rd treatment was feed diet contain with 10 mg/kg mercury, The 4th treatment was feed diet contain with 10 mg/kg mercury, The 5th treatment was feed diet contain with 10 mg/kg mercury. The 5th treatment was feed diet contain with 10 mg/kg lead, The 18th treatment was feed diet contain with 15 mg/kg lead. The last treatment was feed diet contain with 15 mg/kg lead. The diet contain and 3848 kc /digestible energy.

Hg and Pb was assayed using atomic absorption spectrophotometer and the results were given as mg/g dry wt. The effects of different concentration of Hg and Pb on growth parameters of Nile tilapia were studied such as average daily gain, specific growth rate, protein efficiency ratio, feed conversion ratio, The levels of dietary mercury lead caused a negative growth rate, as the level of dietary mercury and lead increased.The best value was recorded for the control while the worst one was observed in treatment (4,7)for mercury and lead respectively. The protein efficiency ratio of tilapia clearly showed gradual decrease in protein efficiency ratio as the level of mercury, lead in the diet increased, the control treatment had the best significant (p<0.01) feed conversion. At the level of mercury, lead increased in the diet, as feed conversion values were obtained.

The histology study showed the effect of mercury and lead on some fish organs (gill-liver) .The histological alterations in the gills of Nile tilapia fish was affected by mercury and lead showing dilation of the marginal channel, hyperplasia of the epithelial cells and lifting of the lamellar epithelium, epithelial lifting, hyperplasia and hypertrophy of the epithelial cells, besides partial fusion of some secondary lamellae , The main alterations found in the liver were irregular-shaped nuclei, nuclear hypertrophy, nuclear vacuolation and the presence of eosinophilic granules in the cytoplasm, cytoplasm and nuclear degeneration was also observed.

Key words: Toxicity, pollutants, mercury, lead, Nile tilapia and *Oreochromis niloticus*

CONTENTS

ITEM	Page
LIST OF TABLE	III
LIST OF FIGURES	IV
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Aquaculture world production	4
2.2. Contamination Define	4
2.3. Effects of pollution by Heavy Metals	5
2.4. Heavy Metal Pollutions and Aquatic Environments	8
2.5. Source of pollution in aquatic system	12
2.6. mercury	14
2.6.1 Sources of mercury in the environment	16
2.6.2. Effects of Mercury on Health	17
2.6.3. The legal limit of mercury	18
2.6.4. Effects of Mercury on fish	19
2.7. LEAD	21
2.7.1. Sources Lead in the Environment	22
2.7.2. Effects of Lead	22
2.7.3. The legal limit of lead	25
2.8. Histopathological changes	25
3. MATERIALS AND METHODS	28
1. Average daily gain (ADG)	31
2. Specific growth rate (SGR)	31
3. Protein efficiency ratio (PER)	31
4. Food conversion ratio (FCR)	31
5. Chemical analysis of fish	32
6. Total mercury and lead	32
7. Statistical analysis	32
Histological study	32
4. RESULTS AND DISCUSSION	33
4.1. Effect of treatment of mercury levels on muscle and liver	33

4.2. Growth parameters	36
4.2.1. Effect of different mercury treatments on average daily gain	36
4.2.2. Effect of different mercury treatments on specific growth	38
rate	
4.2.3. Effect of different mercury treatments on feed conversion	39
ratio	
4.2.4. Effect of different mercury treatments on protein efficiency	41
ratio	
4.3. Lead	42
4.3.1 .Effect of treatment on lead levels in muscle	42
4.3.2. Effect of treatment on lead levels in liver	44
4.4.Growth parameters	45
4.4.1. Effect of different lead treatments on average daily gain	45
4.4.2. Effect of different lead treatments on specific growth rate	46
4.4.3. Effect of different lead treatments on feed conversion ratio	47
4.4.4. Effect of different lead treatments on protein efficiency	49
ratio	
Histology study	50
1. Effect of mercury and lead on histopathological changes of	50
some fish organs	
1.1. Effect on fish gill	50
1.2.Effect on fish liver	53
5. SUMMARY AND CONCLUSIONS	59
6. REFERENCES	63
7. APPENDICES	92