Page No.

1.0INTRODUCTION1				
2.0REVIEW OF LITERATURE				
2.1. History and classification of Campylobacter				
2.2. Epidemiology of Campylobacter				
A. Source of infection	2			
B. Virulence factors	3			
2.3. Prevalence of Campylobacters in bovine				
2.4. Antibiotic sensitivity				
2.5. Campylobacter plasmid11				
2.6. Protein profile				
2.7. polymerase chain reaction (PCR)14				
3.0 MATERIAL AND METHODS18				
3.1.Materials				
3.1.1.Samples	3			
3.1.2.Media used for bacteriological examination	_			
I. Media used for transportation of samples				
II. Medium used for isolation and purification				
III. Media used for maintenance of culures				
V I. Media used for induction of biochemical reactions				
V. Media for antibiotic sensitivity test				
3.1.3. Reagents and solutions 19 3.1.4. Equipments 20				
3.1.4. Equipments				
3.1.6. Solutions for extraction of plasmid DNA				
3.1.7. Reagents and chemicals used for Polymerase chain reaction (PCR)				
3.1.8. Electrophoretic supporting solutions and reagents				
3.1.9. Campylobacter protein profiling (SDS-PAGE)				
3.1.10. Antimicrobial discs	7			
3.2. Methods				
3.2.1. Collection of the samples				
3.2.2. Incubation				
3.2.3. Culturing				
3.2.4. Purification of the culture	7			
3.2.5. Identification	7			
a. Colonial morphology27	7			
b. Morphological examination28				
c. Biochemical tests				
d. In vitro antibiotic sensitivity test				
e. Extraction of the plasmid DNA from Campylobacters29				
f. Protein profiling (whole cell protein profile				
g. Detection of Campylobacter jejuni and Campylobacter coli by PCR				
4. RESULTS				
1. Incidence of Campylobacter species among cattle				
2. Incidence of Campylobacter jejuni and Campylobacter coli among cattle				
3.Results of isolation of Campylobacter species from cattle at different life stages	5			
4. Results of isolation of Campylobacter jejuni and Campylobacter coli from cattle at different life stages	3			

5. In vitro antimicrobial sensitivity test	35
6. Detection of plasmid	36
7.Sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE)	38
8.8. Detection of campylobacter species by Polymerase Chain Reaction	41
5.0 Discussion	42
6.0 English summary	46
7.0 References	50
8.0 Arabic summary	

LIST OF ABBREVIATION

AMP	Ampicillin
С	Chloramphenicol
C. coli	Campylobacter coli
C.jejuni	Campylobacter jejuni
CCDA	Campylobacter Charcoal Differential Agar
CDC	Centers for Disease Control and Prevention
CFJ	Campylobacter fetus subsp jejuni.
Е	Erythromycin
EDTA	Ethylene diamine tetracetic acid
FFC	Florfenicol
GM	Gentamycin
kb	kilobase
kda	kilo Dalton
MAR	Marbofloxacin
MW	Molecular weight
Ν	Neomycin
NA	Naldixic acid
PAGE	Poly acrylamide gel electrophoresis
PCR	Polymerase Chain Reaction
SDS	Sodium dodecyle sulphate
SXT	Sulphamethoxazole
TAE	Tris acetate EDTA
TBE	Tris borate EDTA
TEMED	N,N,N,N tetra methyl ethylene diamine

6.0 SUMMARY

Campylobacters are one of the of the major causes of food borne diarrheal disease world wide, and numerous studies reported high degree of relatedness between *Campylobacters* from cattle and humans. This work was carried out to survey *Campylobacter jejuni* and *Campylobacter coli* infection in cattle and investigate the plasmid profile and antibiotic resistance, as well as diagnosis *Campylobacter is*olates by using PCR and whole cell protein profile.

The results could be summarized as follow:

-Examination of 161 random samples from cattle revealed the presence of Campylobacter species at rate of 11.2%.

-For cows the incidence rate represent 15.5% while for calves it represent 7.8%.

-The different stage life of cows and age of calves affect the recovery rate as follow: for cows the isolation rate in dairy, dry and pregnant cows represent 16.3, 18 and 9% respectively, while for calves it represent 0, 14.2 and 7.7% for newly born calves, calves less than 6 months and those more than 6 months respectively.

-*Campylobacter jejuni* was the common prevalent strain which represent 83% of total isolates. For cows the isolation rate was 12.7% (14.3, 18 and 0% for dairy, dry and pregnant cows respectively) while *Campylobacter coli* represent 2.8% (2.04, 0 and 9% for dairy, dry and pregnant cows respectively.

-For calves *Campylobacter jejuni* represent 6.6% (10.7% for calves less than 6 months and 7.7% for calves more than 6 months but negative for newly born calves), while *Campylobacter coli* rate was 1.1%.

-The detection of plasmid reveal that all examined isolates carry dominant plasmid of MW higher than 21kbp, and this plasmid present in all isolates either *Campylobacter jejuni or Campylobacter coli*, the two *Campylobacter coli* isolates carry the same plasmid profile (5kbp and \geq 21kbp), while *Campylobacter jejuni* isolates harbor different plasmid patterns which reveal genetic diversity of *Campylobacter jejuni*.

- In vitro sensitivity test revealed that Flurofenicol was the superior antibiotic followed by Marbofloxacin (100, and 60%) respectively and 50% of the tested isolates were sensitive to chloramphenicol while the reminant 50% had moderate susceptibility. On the other hand the high rate of resistance was detected against erythromycin and ampicillin, 100% for each while

Summary

resistance to gentamycin , neomycin and sulphamethoxazole represented 50% for each of them.

- Sodium dodecyl sulphate poly acrylamide gel electrophoresis (SDS-PAGE) analysis of whole cell protein of 8 *Campylobacter jejuni* and two *Campylobacter coli* revealed the presence of differences in the protein makeup of the examined *Campylobacter* isolates.

- PCR was carried out to detect ten *Campylobacter* isolates (eight *Campylobacter jejuni* and two *Campylobacter coli*), it succeeded in detection of all examined isolates and in differentiation between the two Campylobacter genetically related strains (*Campylobacter jejuni* and *Campylobacter coli*) which make it a simple , rapid, and useful method for routine identification.