ABSTRACT

Phytoremediation is emerging as a potential cost effective solution for the remediation of the contaminated soils.

Pot experiments were conducted during the growing seasons of years 2005-2007 in Gemmeiza Agriculture Res. Station., Gharbia governorate to investigate the efficiency of some selected plant species (*Brassica juncea, Linum usitatissimum, Hibiscus cannabinus and Corchorus olitorius* plants) to absorb some elements i.e Fe, Mn, Zn,Cd, Ni and Pb from the contaminated soil from El-Gabal Al-Asfar and Abu Rawash farms. The investigated plant parameters were, growth criteria, photosynthetic pigments, mineral and heavy metals content.

Investigated plants (*B.juncea, L. usitatissimum, H.cannabinus and C.olitorius*) were grown in soil irrigated with sewage water to evaluate their ability to accumulate high concentration of the tested heavy metals.

Hordum vulgare (barley) plants were cultivated as an indicator to evaluate the efficiency of the phytoremediation.

The results indicate varied efficiencies of the four plant species to absorb Fe, Mn, Zn, Cd, Ni and Pb from

the contaminated soils as hyperaccumulators. The highest heavy metals uptake was attained by *B. juncea* and *Hibiscus cannabinus* plants.

This study recommended the use of *B. juncea* and *H. cannabinus* plants in phytoextraction purpose, because they have high biomass, high tolerance of heavy metals and high translocation factor for heavy metals.

Keywords:

- Heavy metals
- Phytoextraction
- Phytoremediation
- Heavy metals hyperaccumulators

Contents

Content	Page
1- Introduction	1
- Aim of the Work	3
2- Review of literature.	4
2-1: Environmental pollution	4
2-1-1: Sources of soil pollution	6
2-1-2: Heavy metals contamination of soils	9
2-2: Soil remediation	13
2-3: Phytoremediation technology.	18
2-4: Phytoremediation technique.	19
2-5: Phytoextraction	19
2-6: Application of phytoextraction	25
2-7: Types of Phytoextraction.	26
2-7-1- Natural Phytoextraction.	26
2-7-2- Induced Phytoextraction	27
2-7-3- Mechanism of phytoextraction	27
2-8: Plant species for hyperaccumulator.	29
2-8-1 Metal hyperaccumulation in various	33
plant species.	
2-9- Plant heavy metals	34
3- Materials and Methods	41
3-1: Description of the experiments	41
3-2: Method of Analysis	46
3-2-1: Soil Analysis	46
3-2-2: Plant Analysis	48
4-Results and Disscussion	51
4-1: Soil fertility status	51
4-2: Soil heavy metals content	52
4-3: Soil phytoremediation	53
4-4: Plant Analysis	53
4-4-1- Growth criteria	53
4-4-1-1 Biomass production	53
4-4-2- Photosynthetic pigments	63
4-4-3- Metabolic Products	66
4-4-4- Mineral composition	69
4-4-5 Micronutrients (Fe, Mn and Zn).	73
4-4-6Heavy metals content (Cd, Ni	77

and Pb).	
5- Translocation of heavy metals	81
6- Uptake of Heavy metals	84
7- Heavy metal removal percentage	86
Barley experiment	88
1-Plant Analysis	88
1-1: Growth criteria	88
1-1-1 Biomass production	88
2- Metabolic Products	95
2-1-Total ash and protein content	95
2-2- Total Carbohydrates	98
3- Mineral composition	100
4- Micronutrients (Fe, Mn and Zn).	103
5- Heavy metals content (Cd, Ni and Pb).	108
6- Translocation factor(TF)	112
6-1- (TF) of Fe, Mn and Zn	112
6-2- (TF) of Cd, Ni and Pb	112
7- Uptake of Heavy metals	114
5- Summary	116
6- References	125