ABSTRACT

Studies on growth and productivity of bottle gourd plant under different irrigation and fertilization levels.

Mohamed Said Mohamed Ahmed

The experiment was carried out during the summer seasons of 2008 and 2009, at Al-Bousaily site, Al-Behaira governorate, Central Laboratory for Agricultural Climate (CLAC), on cv. local of bottle gourd plant. This study was established to investigate the effect of different water regimes (80, 100 and 120% using class A pan evaporation) and different nitrogen fertilization levels (40, 80 and 120 Kg N/ fed.) as well as their interaction on vegetative growth, chemical composition of plant foliage, fruit yield and its components, seed and oil yield as well as fatty acid content of oil. The high irrigation level (120% class A pan) gave the highest values of vegetative growth characteristics, i.e., plant length, number of leaves, number of branches, vine diameter, leaf area as well as fresh and dry weight of plant. In addition, the highest irrigation level gave the highest content of macro-nutrients, i.e., N, P and K but gave the lowest content for Ca and Mg. The number of days from transplanting to formation of first male flower, first female flower, harvest of edible and ripped fruits were increased by increasing irrigation level. Fruit yield and its components were increased by increasing irrigation level. Average 100-seed weight, seed yield, oil yield and content of unsaturated fatty acids (oleic, linoleic and linolinec) in both seasons. WUE was decreased by increasing irrigation level, the maximum WUE was obtained by using the lowest irrigation level (80% of class A pan). The lowest values of previous parameters were recorded with low irrigation level (80% class A pan). Nitrogen fertilization had a significant effect on the previous parameters. Application of 120 Kg N / fed. gave the highest values of vegetative growth parameters, fruit yield, seed yield, average 100-seed weight, oil yield and oil content of fatty acid. The lowest values resulted by the addition of 40 Kg N / fed. The interaction between irrigation and nitrogen fertilization

treatments was significant. The highest values of vegetative growth, fruit yield, seed yield as well as oil yield and its content were obtained by the combination between the highest irrigation level (120% of class A pan) and the highest nitrogen fertilizer level (120 Kg N / fed.)

Key words: Bottle gourd, Irrigation regimes, Nitrogen fertilization, Vegetative growth, Chemical composition, Fruits, Seeds, Seed oil, Fatty acid, Chromatogram analysis, WUE.

المستخلص دراسات على نمو وإنتاجية نبات اليقطين تحت معدلات مختلفة من الري والتسميد

محمد سعيد محمد أحمد

أجريت تجربة حقلية بموقع البوصيلي التابع للمعمل المركزي للمناخ الزراعي. مركز البحوث الزراعية خلال الموسم الصيفي لعامي ٢٠٠٨ و ٢٠٠٩ على نباتات اليقطين من الصنف المحلى وكان الهدف من الدر اسة معرفة تأثير معدلات الري (٨٠، ۱۰۰، ۱۲۰% من معادلة حوض البخر) والتسميد النيتروجيني (٤٠، ٨٠، ١٢٠ كجم) نيتروجين للفدان) والتفاعل فيما بينهم على النمو الخضرى، التركيب الكيماوي للمجموع الخضري، التزهير، المحصول الثمري ومكوناته، المحصول البذري ومكوناته ومحصول الزيت وتركيبه من حيث المحتوى من الاحماض الدهنية. أدى استخدام معدل الري العالى (١٢٠% من معادلة حوض البخر) الى الحصول على اعلى القيم في صفات النمو الخضري متمثلة في طول النبات، عدد الأوراق، عدد الافرع، سمك الساق، مساحة سطح الورقة والوزن الطازج والجاف للنبات. كذلك أدى أستخدام مستوى الرى العالى الى زيادة محتوى الاوراق من العناصر الكبرى متمثلًا في النيتروجين، الفسفور، البوتاسيوم ولكن أعطى اقل محتوى من الكالسيوم والماغنسيوم. أدى استخدام مستوى الري العالي الي تاخر النبات في تكوين الاز هار سواء المذكرة او المؤنثة مما ادى الى طول الفترة اللازمة من الزراعة وحتى حصاد الثمار الخضراء والثمار الكاملة النضج. كما أدى الري العالي الي اعلى محصول للبذرة ومكوناته متوسط وزن ١٠٠ بذرة ومحصول الزيت ومحتواه من الاحماض الدهنية غير المشبعة (اوليك، لينوليك، لينولينيك) في كلا موسمي النمو. ادى استخدام مستوى الرى العالى الى انخفاض كفاءة استخدام الماء بينما ادى استخدام مستوى الري المنخفض (٨٠% من معادلة حوض البخر) الى الحصول على اعلى قيمة لكفاءة استخدام الماء. ادت معاملات التسميد النيتروجيني الى حدوث فروق معنوية في جميع الصفات السابقة حيث ادى استخدام معدل التسميد النيتروجيني المرتفع (١٢٠ كجم نيتروجين للفدان) الي الحصول على اعلى القيم في صفات النمو الخضرى، محصول الثمار، محصول البذرة ومحصول الزيت ومكوناته. بينما أدى استخدام معدل التسميد النيتروجيني المنخفض (٤٠ كجم نيتروجين للفدان) الي الحصول على اقل القيم في جميع الصفات السابقة. أدى التفاعل بين الري والتسميد النيتروجيني الى حدوث فروق معنوية وقد تحققت أعلى القيم في النمو الخضري، محصول الثمار، محصول البذور ومحصول الزيت ومكوناته عند استخدام معدل الري العالى مع معدل التسميد النيتر وجيني العالي.

الكلمات الدالة: اليقطين، معدلات الرى، التسميد النيتروجينى، النمو الخضرى، التركيب الكيماوى، الثمار، البذور، زيت البذور، الاحماض الدهنية، كفاءة استخدام الماء.

CONTENTS

Subject		
1. INTRODUCTION		
2. REVIEW OF LITERATURE		
2.1. Irrigation		
2.1.1. Effect of irrigation on vegetative growth		
characteristics		
2.1.2. Effect of irrigation on chemical composition of		
plant foliage		
2.1.3. Effect of irrigation on flowering and earliness		
characteristics		
2.1.4. Effect of irrigation regimes on fruit yield and its		
components		
2.1.5. Effect of irrigation on physical and chemical		
characteristics of fruits		
2.1.6. Effect of irrigation on seed yield and its		
components		
2.1.7. Effect of irrigation on seed oil yield and its		
components		
2.1.8. Effect of irrigation on water use efficiency		
(WUE)		
2.2. Nitrogen fertilization		
2.2.1. Effect of nitrogen on vegetative growth characteristics		
2.2.2. Effect of nitrogen on chemical composition of plant foliage		
2.2.3. Effect of nitrogen on flowering and earliness		
characteristics		
2.2.4. Effect of nitrogen on fruit yield and its		
components		
2.2.5. Effect of nitrogen on physical and chemical		
characters of fruits		

-I-

2.2.6. Effect of nitrogen on seed yield and its	
components	20
2.2.7. Effect of nitrogen on seed oil yield and its	
components	21
2.2.8. Effect of nitrogen on water use efficiency	22
3. MATERIALS AND METHODS	23
3.1. Plant material	23
3.2. Soil properties	23
3.3. Experimental layout	24
3.4. Irrigation treatments	25
3.5. Nitrogen fertilization treatments	28
3.6. Recorded data	28
3.7. Statistical analysis	33
4. RESULTS AND DISCUSSION	34
4.1. Effect of water regimes, nitrogen levels and their	
interaction on vegetative growth of bottle gourd	
plant	34
4.2. Effect of water regimes, nitrogen levels and their	
interaction on chemical content of plant foliage of	
bottle gourd plant	4′
4.3. Effect of water regimes, nitrogen levels and their	
interaction on flowering and earliness	
characteristics of bottle gourd plant	5
4.4. Effect of water regimes, nitrogen levels and their	
interaction on fruit yield and its components of	_
bottle gourd plant	50
4.5. Effect of water regimes, nitrogen levels and their	
interaction on physical characteristics of fruit of	
bottle gourd plant	59
4.6. Effect of water regimes, nitrogen levels and their	
interaction on chemical characteristics of fruit of	-
bottle gourd plant	61

-II-

4.7. Effect of water regimes, nitrogen levels and their interaction on seed yield and its components of	
bottle gourd plant	67
4.8. Effect of water regimes, nitrogen levels and their	
interaction on oil yield and its components of	
bottle gourd plant	69
4.9. Effect of water regimes, nitrogen levels and their	
interaction on fatty acid content of oil of bottle	
gourd plant	71
4.10. Effect of water regimes, nitrogen levels and their	
interaction on water use efficiency (WUE) of	
bottle gourd plant	73
5. SUMMARY AND CONCLUSSION	81
6. REFERENCES	89
ARABIC SUMMARY	

-III-

LIST OF TABLES

No. of Table	Table	Page
1	Effect of different irrigation regimes, nitrogen level and their interaction on plant length (cm) of	
	bottle gourd plant during 2008 and 2009 seasons.	35
2	Effect of different irrigation regimes, nitrogen	
	level and their interaction on leaf number of bottle	
	gourd plant during 2008 and 2009 seasons.	37
3	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on branch number of	
	bottle gourd plant during 2008 and 2009 seasons.	39
4	Effect of different irrigation regimes, nitrogen	
	level and their interaction on vine diameter (mm)	
	of bottle gourd plant during 2008 and 2009	4.1
	seasons.	41
5	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on leaf area, leaf fresh	
	weight and leaf dry weight of bottle gourd plant	40
	during 2008 and 2009 seasons.	43
6	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on vine fresh weight,	
	vine dry weight, plant fresh weight and plant dry	
	weight of bottle gourd plant during 2008 and 2009	45
7	seasons.	43
/	Effect of different irrigation regimes, nitrogen levels and their interaction on leaf content of N,	
	P, K, Ca, Mg and chlorophyll (SPAD reading) of	
	bottle gourd plant during 2008 season.	48
8	Effect of different irrigation regimes, nitrogen	40
0	levels and their interaction on leaf content of N,	
	P, K, Ca, Mg and chlorophyll (SPAD reading) of	
	bottle gourd plant during 2009 season.	49
	oonie zouru plant uuring 2009 season.	T 7

-IV-

No. of Table	Table	Page
9	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on sex ratio (male /	
	female), days from transplanting to first male	
	flower, first female flower, harvest edible fruit and	
	harvest ripped fruit of bottle gourd plant during	
10	2008 season.	52
10	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on sex ratio (male /	
	female), days from transplanting to first male	
	flower, first female flower, harvest edible fruit and	
	harvest ripped fruit of bottle gourd plant during	50
11	2009 season.	53
11	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on total fruit yield and	
	its components of bottle gourd during 2008 and	
10	2009 seasons.	57
12	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on average fruit weight	
	(g), average fruit length (cm) and average fruit diameter (mm) of bottle gound plant during 2008	
	diameter (mm) of bottle gourd plant during 2008	60
13	and 2009 seasons.	00
15	Effect of different irrigation regimes, nitrogen levels and their interaction on edible fruit content	
		62
14	of N, P, K, Ca and Mg during 2008 season.	02
14	Effect of different irrigation regimes, nitrogen levels and their interaction on edible fruit content	
	of N, P, K, Ca and Mg of bottle gourd during 2009	63
15	season. Effect of different irrigation regimes, nitrogen	05
15	levels and their interaction on edible fruit content	
	of TSS, fibers, carbohydrates and vitamin C of bottle gourd during 2008 season.	65
	oome gourd during 2000 season.	05

-V-

No. of Table	Table	Page
16	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on edible fruit content	
	of TSS, fibers, carbohydrates and vitamin C of	
	bottle gourd during 2009 season.	66
17	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on average 100 seed	
	weight (g), seed yield gm /plant and seed yield	
	(Kg)/ fed. of bottle gourd during 2008 and 2009	
	seasons.	68
18	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on seed oil content,	
	seed oil yield (g) /plant and seed oil yield (Kg)	
	/fed. of bottle gourd during 2008 and 2009	-0
	seasons.	70
19	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on main fatty acid	
	components of seed oil of bottle gourd during	
	2008 and 2009 seasons.	72
20	Effect of different irrigation regimes, nitrogen	
	levels and their interaction on water use efficiency	
	(WUE) Kg/ m3 of irrigation water for fresh fruits,	
	seeds and oil of bottle gourd during 2008 and	
	2009 seasons.	74

-VI-

LIST OF FIGURES

No. of Figure	Figure	Page
1	Effect of different irrigation regimes on fruit, seed	
	and oil yield of bottle gourd plant during 2008 season.	71
2	Effect of different irrigation regimes on fruit, seed	, 1
	and oil yield of bottle gourd plant during 2009 season.	71
3	Effect of different nitrogen fertilizer levels on	
	fruit, seed and oil yield of bottle gourd plant during 2008 season.	72
4	Effect of different nitrogen fertilizer levels on	
	fruit, seed and oil yield of bottle gourd plant during 2009 season.	72
5	Effect of 80% class A pan irrigation treatment on	
	chromatogram analysis of oil content of fatty acids	75
6	Effect of 100% class A pan irrigation treatment on	10
	chromatogram analysis of oil content of fatty acids	75
7	Effect of 120% class A pan irrigation treatment on	
	chromatogram analysis of oil content of fatty acids	76
8	Effect of 40 Kg N /fed. fertilizer level on	
	chromatogram analysis of oil content of fatty acids	76
9	Effect of 80 Kg N /fed. fertilizer level on	
	chromatogram analysis of oil content of fatty	77
10	acids Effect of 120 Kg N /fed. fertilizer level on	77
10	chromatogram analysis of oil content of fatty	
	acids	77

-VII-

ABBREVIATION

AWD	= Available water deficit
CPE	= Cumulative pan evaporation
Ca	= Calcium
dS / m	= Desi Siemens per meter
EC	= Electrical conductivity
Eto	= Reference evapotranspiration
Etc	= Crop evapotranspiration
Epan	= Pan evaporation
FC	= Field capacity
fed.	= Feddan (4200 m ²)
g	= Gram
ha	= Hectare (10000 m^2)
hPa	= Soil water pressure in related to atmospheric pressure
Κ	= Potassium
Kc	= Crop coefficient
Кср	= Plant- pan coefficient
Kg	= Kilo gram (1000 grams)
L.S.D	= Least Significant Difference
Mg	= Magnesium
mm	= Millimeter
Ν	= Nitrogen
Р	= Phosphorus
ppm	= Part per million
%	= Percentage
TSS	= Total soluble solids
WUE	= Water use efficiency

-VIII-