ABSTRACT

Jehan Bastamy Ali Farag: Functional Properties of Modified Buffalo Milk Casein by Glycosylation . Unpublished, PH.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2011.

Casein, the major milk protein component and its caseinate derivatives have physicochemical, functional and nutritive properties which make them useful worldwide. Functionality of casein is defined as any physicochemical property that affects the processing and behavior of protein in a food system, as judged by the quality attributes of the final product. Thus, the aim of the present research was to modify of the physico-chemical and functional properties of buffalo's casein through glycosylation with food - additives, i.e. ribose, glucose, galactose and lactose. The glycation of Rib-Glu-Gal- and Lac-casein was generated at 60 C°. pH 6.5 for 72 h and then dialysed for 36 h. The samples were analysed for amino acid, ethanol stability, Ca sensitivity, pH sensitivity, foam properties, emulsion properties, buffer capacity, viscosity, surface tension. Lysine side chain in control casein was 8.5 mg and decreased to 1.99, 3.4, 4.6 and 3.49 mg for glycated casein with ribose, glucose, galactose and lactose, respectivity. Histidine side chain in control casein was 2.98 mg and decreased to 0.001, 1.49, 1.15 and 1.7 mg for glycated casein with ribose, glucose, galactose and lactose, respectivity.

Ethanol stability was improved as a result of carbohydrate binding. The precipitations of alcohol test were detected only by using both 75 % and 95% alcohol concentrations and at pH 4.0 only (around isoelectric point of casein).

The casein solubility in calcium solutions for modified and unmodified casein was determined at different calcium concentrations ranging from 0 to 100 mM of $CaCl_2$ at pH value of 7.0. The results of glucose and lactose showed the higher solubility when compared to unmodified casein whereas galactose showed less solubility, but ribose showed more similar solubility as control sample.

Glycated casein with glucose and lactose showed the higher foam stability and glycated with ribose and galactose presented the lowest values upto the end of the experiment. A significant difference between type of carbohydrate and emulsion properties shows glucoglycation the highest significantly value of casein then lactose, ribose and galactose. Control casein shows the least value.

Casein glycated with galactose showed the highest buffer index, followed by glucose, then ribose and the lowest was with lactose. Glycated buffalo's casein under the same experimental conditions, i.e., pH, temperature, and shear rate, can be graded in order of increasing apparent viscosity and shear stress as a result of changing both of kind of carbohydrate and concentration of protein solution: galactoglycated; lactoglycated; riboglycated; glucoglycated; unmodified control casein. Increasing shear rates resulted in decreasing apparent viscosity. It can be seen from the results reported that increasing the pH value resulted in decreased values of apparent viscosity.

Regarding the surface tension of 0.1% solutions of control buffalo casein as well as various glycated caseins, it was noticed that increasing the pH value resulted in significantly increase in the surface tension except at pH 4.0 which showed significant decrease. Glycosylation with lactose gave the least value of surface tension whereas the glycosylation with galactose showed the highest value.

Key Words:

Buffalo casein, Ribose, Glucose, Galactose, Lactose, Glycosylation, Functional properties.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	ix
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Caseins	3
2.2. Protein modification	4
2.2.1. Chemical modification	6
2.2.1.1 Acylation	6
2.2.1.2. Esterification /Amidation	7
2.2.1.3. Reductive alkylation	7
2.2.1.4. Phosphorylation	8
2.2.2. Physical modification	8
2.2.3. Enzymatic modification	9
2.2.3.1. Some Functional properties of milk proteins	9
2.2.3.2. Functional properties of casein	10
MATERIALS AND METHODS	45
3.1. MATERIALS	45
3.2. Methods	45
3.2.1 Preparation of acid casein	45
3. 2.2 Glycosylation of casein	45
3.3. Chemical analyses	46
3.3.1 Moisture and ash	46
3.3.2 Total protein	46
3.3.3. Determination of total solids	46
3.3.4. pH measurement	46
3.3.5. Ethanol stability	47
3.3.6. Calcium sensitivity	47
3.3.7. pH sensitivity	47
3.3.8. Buffering capacity and pH value	47
4. Functional properties of the Glycosylated Casein	48

3.4.1. Foam volume capacity and foam stability	48	
	Page	
3.4.2. Emulsifying capacity and emulsion stability	48	
3.5. Rheological properties	49	
3.5.1. Viscosity	49	
3.5.2. Shearing properties (flow behaviour) and dynamic viscosity		
3.5.3. Surface tension		
3.6. Determination of amino acids composition for modified and		
unmodified casein	50	
3.7. Statistical analysis	51	
RESULTS AND DISCUSSION	52	
4.1. Amino acid of native buffalo casein and glycated casein with		
different sugars	52	
4.2. Ethanol stability (ES) of glycated buffaloe casein	53	
4.2.1. ES of modified casein with different sugars	53	
4.3. Calcium sensitivity of glycated buffalo casein with different		
sugars	56	
4.4. Effect of environmental pH on the solubility of glycated		
buffalo casein	60	
4.4.1. pH sensitivity of glycated buffalo casein with ribose,		
glucose, galactose and lactose	61	
4.5. Foaming properties of glycated buffalo casein with different		
sugars	64	
4.5.1. Foam volume capacity of modified casein with different		
sugars	64	
4.5.2. Foam stability (FS) of modified buffalo casein with different	64	
4.5.2. Foam stability (FS) of modified buffalo casein with different	64 67	
C C		
4.5.2. Foam stability (FS) of modified buffalo casein with different sugars	67	
4.5.2. Foam stability (FS) of modified buffalo casein with different sugars4.6. Emulsifying Properties	67 74	
 4.5.2. Foam stability (FS) of modified buffalo casein with different sugars 4.6. Emulsifying Properties	67 74	

sugars 4.8. Rheological properties of casein solution chemically modified by reductive alkylation with reducing sugars..... 88 89 4.8.1 Control casein 4.8.1.1. Effect of protein concentration 89 94 4.8.1.2. Effect of pH 102 4.8.1.3. General comparison 4.8.2. Ribose glycated casein 104 104 4.8.2.1. Effect of protein concentration 4.8.2.2. Effect of pH 110 119 4.8.2.3. General comparison 4.8.3. Glucose glycated casein 120 4.8.3.1. Effect of protein concentration 120 126 4.8.3.2. Effect of pH 134 4.8.3.3 General discussion 4.8.4. Galactose glycated casein 136 4.8.4.1. Effect of protein concentration 136 4.8.4.2. Effect of pH 142 4.8.4.3. General comparison 150 4.8.5. Lactose glycated casein 152 4.8.5.1. Effect of protein concentration 152 159 4.8.5.2. Effect of pH 4.8.5.3. General comparison 167 4.8.6. Influence of the kind of the bound carbohydrate to buffalo casein on the flow properties 169 4.8.6.1. The effect of pH and kind of carbohydrate on the apparent 173 viscosity 179 4.8.6.2. General comment 179 4.9. Surface tension of glycated buffaloe's casein SUMMARY AND CONCLUSIONS 183 REFERENCES 188 ARABIC SUMMARY

XXI

ABBREVIATIONS

AGEs	: Advanced glycosylation end products	
AOAC	: Association of Official Analytical Chemists	
a _w	: Water activity	
BSA	: Bovine serum albumin	
α-CN	: Alpha casein	
β-CN	: Beta casein	
к-CN	: Kappa casein	
ССР	: Colloidal calcium phosphate	
DM	: Dry matter	
FE	: Foaming expansion	
FS	: Foam stability	
FVC	: Foam volume capacity	
NPN	: Non-protein nitrogen	
Μ	: Molar	
ES	: Ethanol stability	
U/g	: Unit per gram	
EAI	: Emulsion activity index	
RV	: Relative viscosity	
V	: Viscosity	
σ	: Surface tension	
K	: Consistency coefficient	
kJ	: Kilo Jull	
DV	: Dynamic viscosity	
mМ	: Milli mole	
min	: Minute	
nm	: Nano meter	
mPa*s	: Millipascal * per second	
cP	: CentiPoise	
pI	: Isoelectric point	
α-La	: α - lactolbumin	
β-Lg	: β-lactoglobulin	

XXII

Da	: Dalton
SDS	: Sodium dodecylsulfate
SE	: Standard error