ABSTRACT

The present work aims at studying the efficacy of some untraditional techniques in the control of roof rats, *Rattus rattus*, and the protection of non-target birds from the poisoning hazards of rodenticides.

Potassium tartrate, as a bird repellent, was tested for protecting non-target bird species from the poisoning hazards of acute and anticoagulant rodenticides. Potassium tartrate (PT) proved to be a good repellent for quails, not for roof rats. Mortality rates have decreased from 87.5 to zero% for quails and stayed fixed at 100% among rats after feeding on PT/zinc phosphide bait. Also the mortality was decreased from 20% to zero% after additions of PT to 0.005% difenacoum/wheat grain for quails. On the other hand the addition of PT to 0.005% chlorophacinone/crushed maize bait had decreased its acceptability by quails by about half, and increased mortality among roof rats. The addition of PT slightly increased the acceptability of bromadiolone bait by rats. It is evident that the PT/0.005% bromadiolone bait reduced the acceptability by quails from 40% to 22%.

Zinc phosphide/molasses gel edible-tracking delivery system was tested in non-choice and free-choice tests. In non- choice tests the plain molasses gel as well as the gel/toxicant bait are readily accepted and removed by caged roof rats. While in free choice tests, the acceptability of the gel/toxicant bait was higher than that of plain molasses gel. The acceptability of 0.5% zinc phosphide/molasses gel bait was about twice that of 0.5% zinc phosphide/crushed maize baits. The mortalities were 50% and 33.3% among rats treated with toxicant/molasses gel bait and 0.5%zinc phosphide/crushed maize baits, respectively

The male anti-fertility compound α -chlorohydrin (ACH) was tested for the control of roof rats. ACH was provided to rats as 1% crushed maize bait for 3 days. After two days from feeding on bait at average of 279.3mg/kg only16.6% mortality was occurred, and the rate of acceptability of ACH bait was 19.86%. The microscopic examination of the testes and epididymides of rats sacrificed 7, 35 and 60 days after the application of α -chlorohydrin indicated that the testes and epididymides were damaged and the process of spermatogenesis was greatly reduced.

Key words: Roof rats, untraditional control, bird repellent, quails, anticoagulant, zinc phosphide, zinc phosphide molasses gel, anti-fertility, α -chlorohydrin.

المستخلص العربي

يهدف العمل الحالي إلى دراسة فعالية بعض التقنيات غير التقليدية الأمنة بيئيا في مكافحة الجرذ المتسلق و كذلك في حماية الطيور غير المستهدفة من أخطار التسمم بمبيدات القوارض.

أثبتت الدراسة فعالية مادة ترترات البوتاسيوم بتركيز ١٦,٦ كمادة طاردة للسمان و ليس للجرذان، فقد إنخفضت نسبة الوفيات بين السمان من ٨٧,٥% إلى صفر % بينما ثبتت هذه النسبة عند ١٠٠ % في حالة الجرذان بعد إضافة هذه المادة إلى طعم فوسفيد الزنك. وإنخفضت نسبة الوفيات ايضا من ٢٠% إلى صفر % بين السمان عند إضافة هذه المادة إلى طعم الدايفيناكوم بتركيز ٥٠٠٠٠ %. و لقد أوضحت الدراسة من ناحية اخرى، أن إضافة مادة ترترات البوتاسيوم بالتركيز السابق ذكره إلى طعم الكلوروفاسينون بتركيز ٥٠٠٠٠ قد ادى إلى خفض نسبة الإستساغة بواسطة طائر السمان إلى نصف قيمتها تقريبا و إلى زيادة نسبة الوفيات بين الجرذان المتسلقة . أما في حالة البروماديولون فقد أدت إضافة هذه المادة إلى زبادة طفيفه في نسبة الإستساغة بواسطة طائر السمان من ٤٠% إلى

إختبرت الدراسة أيضا فعالية خليط من جيلاتين العسل الأسود و فوسفيد الزنك كمادة غذائية و عالقة سواء في الدراسات الغذائية الإختيارية أو غير الإختيارية، و لقد أظهرت نتائج الدراسات الغذائية غير الإختيارية استساغة الجرذان للجيلاتين السام، بينما أوضحت نتائج الدراسات الغذائية الإختيارية أن إستساغة الجرذان للجيلاتين السام كانت أعلى من الجيلاتين غير السام، و أوضحت الدراسة أيضا أن نسبة إستساغة الجيلاتين السام كانت ضعف نسبة إستساغة طعم جريش الذرة السام، و لقد تم تسجيل نسبة وفيات مقدارها ٥٠% و ٣٣% بين الجرذان التي تعرضت للجيلاتين السام و طعم جريش الذرة السام على التوالي.

و من الطرق غير التقليدية في المقاومة التي تم إختبار فعاليتها، إستخدام مادة ألفا كلورو هيدرين كمادة مسببة للعقم في ذكور الجرذان. و لقد أوضحت النتائج فعالية هذه المادة بتركيز ١% في إحداث عقم دائم بين الذكور التي تناولتها. لقد تم تقديم هذه المادة إلى ذكور الجرذان بالتركيز السابق مع جريش الذره لمدة ثلاث أيام متوالية. و لقد سببت هذه المادة نسبة وفيات بين الجرذان وصلت إلى ١٦,٦ % بعد يومين من تقديمها و كانت نسبة الإستساغة ١٩,٨٦ %. و لقد أوضح الفحص الميكروسكوبي لقطاعات من كل من الخصية و البربخ من ذكور الجرذان التي تم تحضيرها بعد ٧و ٥٠ و ١٠ يوما من إنتهاء تقديم هذه المادة حدوث أضرار مرضية في كل منهما و توقفت عملية تكوين الحيوانات المنوية بدرجة كبيرة.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Poisoning hazards of rodenticides to non-target animals	3
2.2. Bird and rodent repellents	9
2.3. Rodenticide delivery and grooming behavior	16
2.4. The use of anti-fertility compounds in rodent control	23
3. MATERIAL AND METHODS	33
3.1. Effect of potassium tartrate (PT) as a repellent material	33
3.1.1. Materials used	33
3.1.2. Test animals	35
3.1.3. Cage tests	35
3.1.3.1. Crushed maize (Pre – treatment) feeding tests	37
3.1.3.2. Potassium tartrate (PT)/crushed maize non-choice	
feeding tests	37
3.1.3.3. Potassium tartrate/poison bait formulation non-	
choice feeding test	37
3.1.3.4. Evaluating the effect of adding PT to 0.005%	
chlorophacinone/crushed maize bait on roof rat under	
laboratory non- choice feeding condition	38
3.1.3.5. Poison bait non – choice feeding tests	38
3.1.3.6. Determination of prothrombin time in treated rats	38
3.2. Evaluating the efficacy of a tracking- edible molasses gel/zinc	
phosphide delivery system in controlling roof rats	39
3.2.1. Testing rats, source and maintenance	39
3.2.2. Non-choice feeding tests	39

	Page
3.2.3. Free choice feeding tests	40
3.3. The use of α -chlorohydrin as an anti-fertility agent in	
the control of roof rats	42
3.3.1. Test animals	43
3.3.2. Preparation of plain and toxic bait	43
3.3.3. Cage tests	43
3.3.3.1. Pre-treatment non-choice feeding tests	43
3.3.3. 2. 1% α chlorohydrin/crushed maize non-choice feeding	
tests	44
3.3.3. Post-treatment non-choice feeding tests	44
3.4. Statistical analysis	44
4. RESULTS AND DISCUSSION	45
4.1. Effect of potassium tartrate as a replient agent	45
4.1.1. Laboratory studies	46
4.1.1.1. Addition of potassium tartrate (PT) to crushed maize	46
4.1.1. 1.1. Effect on quails	46
4.1.1.1.2. Effect on rats	50
4.1.1.2. Addition of potassium tartrate to zinc phosphide/ crushed	
maize bait	53
4.1.1.2. 1.Effect on quails	53
4.1.1.2.2. Effect on rats	56
4.1.1.3. Addition of potassium tartrate to chlorophacinone/	
crushed maize bait	59
4.1.1.3. 1. Effect on quails	59
4.1.1.3.2. Effect on rats	63
4.1.1.3.3 Effect of the addition of PT on the complete lethal time of chlorophacinone crushed maize bait, to roof rat under laboratory non-choice feeding condition	66
4.1.1.3.4. Effect of PT on prothrombine time	66
4.1.1.4. Addition of potassium tartrate to bromadiolone/wheat grain bait	70
4.1.1.4.1. Effect on quails	70
4.1.1.4.2 .Effect on rats	74

4.1.1.5 Effect of the addition of notossium tentrate to	Page
4.1.1.5. Effect of the addition of potassium tartrate to difenacoum/wheat grain bait on its consumption by	
quails	77
4.1.1.6. Net effects of the addition of potassium tartrate to different rodenticide formulations	81
4.1.1.6.1.Effect on quails	81
4.1.1.6.2. Effect on rats	84
4.1.1.7. Selectivity of the effects of adding potassium tartrate to	
rodenticide formulations on quails and roof rats and	
study recommendition	87
4.2. The efficacy of a tracking-edible molasses gel/zinc phosphide delivery system in overcoming bait shyness roof rats	91
4.2.1. Non-choice test	92
4.2.2 Free-choice test	95
4.3. The use of α -chlorohydrin as antifertility agent of male roof	
rats	105
4.3.1. Effect of 1% α- chlorohydrin)/crushed maize bait on	
consumption, acceptability and mortality of roof rats	106
4.3.2. Strility and histopathological effects of α-chlorohydrin on the testes and epididymides of male roof rats	109
4.3.2.1. The histological structure of the testis and cauda epididymis of a control (normal or untreated) roof rat	110
4.3.2.2. Histopathological changes in the testes and epididymides of roof rats scarified 7 days after treatment with ACH	113
4.3.2.3. Histopathological changes in the testes and epididymides of roof rats sacrified 35 days after treatment with ACH	118
4.3.2.4. Histopathological changes in the testes and epididymides	
of roof rats scarified 60 days after treatment with ACH	123
5. SUMMARY	132
6. REFERENCES	138
ARABIC SUMMARY	