<u>CONTENT</u>

1- Introduction				
2- Review of	4			
literature				
2.1. Foot and Mouth	4			
Disease				
2.1.1. History in the	4			
world				
2.1.2. History in	6			
Egypt				
2.1.3. Classification of foot and mouth disease	7			
virus				
2.1.4. Morphology of FMD	8			
virus				
2.1.5. Structure of FMD	9			
virus				
2.1.6. Physico-Chemical properties of FMD	11			
Virus				
2.1.7. Antigenic components of FMD				
virus				
2.1.7.1. Structural	12			
antigens				
2.1.7.2. Non- structural proteins	12			
(NSP)				
2.1.8. Typing and subtyping of FMD	13			
virus				
2.1.9. Propagation of	15			

FMDv				
2.1.10 Host	16			
susceptibility				
2.1.11. Transmission of	16			
FMDv				
2.1.12. Pathogensis of	17			
FMDv				
2.1.13. Foot and Mouth Disease	18			
Vaccines				
2.1.13.1. Inactivated FMD	19			
vaccine				
2.1.13.1.1. Oil inactivated FMD	21			
Vaccine				
2.1.13.2. Genetically engineered FMD	23			
vaccines				
2.1.13.3. FMD combined vaccine containing other	24			
antigens				
2.2. Bovine Ephemeral Fever virus	28			
(BEF)				
2.2.1. History in the	28			
world				
2.2.2. History of BEF in	30			
Egypt				
2.2.3.Classification of BEFv	31			
2.2.4. Morphology of BEFv	32			
2.2.5. Structure of				
BEFv				
2.2.6. Physico-chemical	35			

properties			
2.2.7. Antigenic characters of	36		
BEFv			
2.2.8. Cultivation of BEFv	37		
2.2.8.1. Propagation of BEFv in laboratory			
animals			
2.2.8.2. Propagation of BEFv in tissue	38		
culture			
2.2.9. Host	39		
susceptibility			
2.2.10. Virus transmission and mode of	40		
infection			
2.2.10. Viral	41		
pathogenicity			
2.2.11. BEF	42		
vaccines			
2.2.11.1. Live attenuated BEF	42		
vaccines			
2.2.11.2. Inactivated BEF			
vaccines			
2.2.11.3.Genetically engineered BEF			
vaccine			
3- Materials and	47		
Methods			
3.1. Materials	47		
3.1.1.	47		
Virus			
3.1.2. Serum Samples	47		

3.1.3. Tissue	48	
culture		
3.1.4. Tissue culture media and	48	
Solutions		
3.1.5. Reagent for virus	50	
concentration		
3.1.6. Reagents for vaccine	50	
preparation		
3.1.7. Materials used for SNT	51	
3.1.8. Material used for	52	
ELISA		
3.1.9. Expremental Animals	55	
3.2. Methods	56	
3.2.1.Propagation of FMD and BEF viruses	56	
3.2.2. Titration of FMD and BEF viruses	56	
3.2.3. Virus purification	57	
3.2.4. FMD Virus concentration		
3.2.5. Preparation of inactivated		
vaccines		
3.2.6. Evaluation of the prepared	60	
vaccines		
3.2.7. Experimental	61	
design		
3.2.7.1. Vaccination of animal groups	61	
3.2.7.2. Collection of serum samples	62	
3.2.7.3. Evaluation of the prepared vaccines (SNT,		
ELISA)		

3.2.7.4. Challenge test	67
4. Results	68
5. Discussion	133
6. Summary	144
7. References	146

LIST OF ABBRIVIATIONS

· · · ·		
A	•	Angstrom
Ab	:	Antibodies
AEI	:	Acetyl ethelenimine
AL(OH) ₃	:	Aluminum hydroxide gel
BAL	:	Bovine albumine
BEF	:	Bovine ephemeral fever
BEI	:	Binary- Ethylene-Imine
BHK ₂₁	:	Baby Hamster Kidney cell line 21
CFA	:	Complete Freund adjuvant
CFT	:	Complement Fixation Test
CPE	:	Cytopathic Effect
DDW	:	Double Distilled Water
DOE	:	Double oil emulsion
dpv	:	Dayes post vaccination
ELISA	:	Enzyme Linked Immunosorbent Assay
FA	:	Formalin
FMD	:	Foot and Mouth Disease
FMDV	:	Foot and Mouth Disease Virus
GSLS	:	ginseng stem and leaf saponins
hr	:	hours
HS	:	Hemolytic system
IFA	:	Incomplete Freund adjuvant
IBR	:	Institute of biological Remo
I/P	:	Intraperitonial
ISA	:	Incomplete Seppic adjuvant
Iμ	:	International unite
Kb	:	Kilo base
KDa	:	Kilo dalton
LD ₅₀	:	Lethal dose fifty
MEM	:	Minimum essential medium
MHD	:	Minimum Haemolytic Dose
Μ	:	Mole
MLD50	:	Minimum lethal dose fifty

6. SUMMARY

Regular Prophylactic vaccination of cattle and buffalo against Foot and Mouth disease virus and Bovine ephemeral fever virus has become an important input to maintain animal productivity and to reduce economic losses in Egypt.

Due to the economic losses caused by FMD and BEF viruses and advantages claimed to be offered by combined vaccines as it have many benefits for the manufacturer , administrator and for the animal health ,the present study was undertaken to evaluate the ability of prepared combined inactivated oil FMD+BEF vaccine contains FMDV serotypes circulating in Egypt (O, A, SAT2) to promote sustained protective immune response in calves following single dose application compared with individual trivalent FMD, BEF vaccines.

Three experimental batches of trivalent FMD, BEF and combined FMD /BEF vaccines were prepared. Viruses were inactivated by binary ethyleneimine and adjuvanted with Montanide ISA 206 oil for preparation of (W/O/W) double oil emulsion vaccines, prepared vaccines were proven to be sterile and free from bacterial and fungal contamination or viable viral residuals.

Susceptible calves free from either FMD or BEF antibodies were divided into three groups. First group were vaccinated with FMD vaccine, second group were vaccinated with BEF vaccine and the third group were vaccinated with combined FMD/BEF vaccine. Serum samples were collected from the all groups weekly for one month then every two weeks and tested for determination of antibody titers against either FMD or BEF antigens using SNT and ELISA until reaching unprotective antibody level.

The results of potency testing of the three prepared vaccines in vaccinated calves showed the following results:

1- Protective antibody titer against FMD antigens elicited by either trivalent FMD or combined FMD/BEF started between 2nd, 3rd weeks post vaccination, antibody titers

gradually increased attained maximum level up to 6^{th} and 8^{th} week and maintained at level considered protective for a period ranged between 32 to 38 weeks.

2- Protective antibody titer against BEF antigen elicited by either BEF or combined FMD/BEF vaccine started at 2^{nd} week post vaccination, attained maximum level at 8^{th} week and lasted at level considered protective for a period ranged between 40 to 42 weeks post vaccination.

3-Potency testing of combined FMD/BEF vaccine against virulent FMDV was performed in calves vaccinated then challenged with three homologous serotypes FMD viruses (O, A, SAT2) 21 days post vaccination showed 100% protection which associated with seroconvertion to the three serotypes.

4-statistical analysis of antibodies titers elicited by individual and combined vaccines showed no significant variation (p < 0.05) in the serological response elicited by individual trivalent FMD, BEF vaccines and combined vaccine containing four antigens.

In conclusion cattle could be safely vaccinated with FMD/BEF combined vaccine without impairing the immune response against both antigens. Vaccination of large number of animals against important viral diseases like FMD and BEF in country like Egypt involve high manpower and labor cost. The approach of combined vaccine is a more intelligent approach, as it would save labor cost as well as the cost of adjuvant.