ABSTRACT

Student Name: Sohad Fouad Said El Sharnoby Title of the thesis: Biochemical Studies on Production of Humic Substances and Their Application in Organic Farming Degree: Doctor of Philosophy of Science (Organic Chemistry)

Six different compost samples were evaluated. Marjoram compost was selected as the more humified one. Results of investigating isolation and purification procedures suggested milder methods to obtain good yield of humic acid with minimum structural alterations. Structural features studies of compost humic acid compared to more humified ones(i.e.Leonardite) and a synthetically prepared humic-like substance using a variety of wet-chemical and spectroscopic methods, exhibit noticeable similarity and revealed that they are close to soil humic acids with slightly less aromaticity, molecular weight and functional groups content. With respect to biological activities studies they inhibited in vitro, mycelial growth of 5 from 8 phytopathogenic fungi tested. also in vivo studies confirm the important role of humic acids isolated from marjoram compost as plant growth promoters and plant disease control agents in addition to their synergistic effect when dual inoculated with bacillus subtilis or arbuscular mycorrhizal fungi and subsequently confirm their important role as natural, safe organic fertilizer which improve soil fertility and increase crop yield and quality.

Keywords :Humic substances, humic acids, fulvic acids ,compost, organic farming, organic agriculture, organic fertilizers biological control, biological activities, humification composting, humic-like substances.....

Supervisors:	
1. Prof. Dr. Abdo Othman Abd Elhamied	Signature
2. Prof. Dr. Ahmed Mohamed Ahmed Ali Dokhan	Signatura
2. 1101. D1. Anneu Monameu Anneu An Dokhan	Signature
Prof. Dr. Hamed	Abd Ellatiof
Proi. Dr. Hameu	ADU EIIAUEI

Chairman of Chemistry Department Faculty of Science- Cairo University

المستخلص

اسم الطالبة: سهاد فؤاد سعيد الشرنوبي عنوان الرسالة: دراسات كيميائية حيوية علي انتاج المواد الهيومية وتطبيقاتها في الزراعة العضوية

الدرجة: دكتوراة الفلسفة (كيمياء عضوية).

تم تقييم سته عينات مختلفة من الكومبوست وتم إختيار اكثرها تدبلا وهو كمبوست المردقوش. وقد أظهرت نتائج دراسة طرق فصل وتنقية الأحماض الدوبالية الحاجة الى الطرق اللطيفة للحصول على أعلى انتاجية مع أدنى تغيرات ممكنة فى التركيب.وبمقارنة الخصائص التركيبية للأحماض الدوبالية المستخلصة من كمبوست المردقوش بتلك المستخلصة من المواد الاكثر تدبلا مثل الليونارديت والمادة الشبيهة بالاحماض الدوباليه والمحضرة معمليا وذلك باستخدام خليط من التحاليل الكيميائية والطيفية فقد أظهرت النتائج تشابها ملحوظا مع اقتراب خصائصها التركيبية مع الخصائص من المواديمية المستخلصة من التربة ولكن درجة عطريتها ووزنها الجزيئي ومحتواها من المجاميع الفعالة أقل بدرجه طفيفة.

وفيما يتعلق بدراسه الأنشطه البيولوجيه فقط أظهرت الأحماض الدوباليه المستخلصة من كمبوست المردقوش نشاطا تثبيطيا للنمو الميسليومي لخمسه من الفطريات الممرضه للنبات من بين ثمانيه فطريات تم اختبارها معمليا. كما اكدت الدراسات في الصوبه والحقل أهميه دور الاحماض الدوباليه كعوامل محفزه لنمو النبات وعوامل مقاومه حيوية بالإضافة الى تاثيرها التعاوني عند تلقيحها تقيحا مزدوجا مع بكتريا الباسيلس ستلس أو فطريات الميكورهيزا ومن ثم تأكيد أهمية دورها كسماد عضوى طبيعي مأمون يعمل على تحسين خصوبة التربة ويزيد من إنتاج المحصول ومستوى جودته . السادة المشرفون

۱. أ.د/ عبده عثمان عبد الحميد
 ۲. د/ أحمد محمد احمد على دخان

أ.د/ حامد عبد اللطيف

رئيس قسم الكيمياء كلية العلوم – جامعة القاهرة

CONTENTS

	Page
- Acknowledgment	
- List of table	VII
- List of figure	Х
- List of Abbreviation	
- Objectives of the current study	
- Abstract	
1. Introduction	1
1.1. Background	1
1.2. Influence of compost application on soil quality.	4
1.3. Major pathways of humic substances synthesis.	6
1.4. Extraction and fractionation of humic substances	13
1.5. Purification of humic acids	15
1.6. Synthesis of a model of humic-like substances	17
1.7. Structural features of purified humic acids	18
1.7.1. Elemental composition	19
1.7.2. Functional groups composition	21
1.7.3. Spectroscopic approaches	21
- Ultraviolet-visible (UV-vis) absorption spectroscopy	22
- Infrared (IR) spectroscopy	24
- ¹ H-Nuclear Magnetic Resonance(¹ H-NMR)	25
1.8. Unique properties of humic substances which make them	
suitable for organic farming.	26
2. Experimental	33
2.1. Compost sampling	33
2.2. Organic fertilizers and soil analyses	34
2.2.1. Compost bulk density	34
2.2.2. Moisture content	34

Page

2.2.3. Ash content	34
2.2.4. pH value	35
2.2.5. Electrical conductivity (E.C.)	35
2.2.6. Soluble nitrogen (NH_4^+ and NO_3^- nitrogen) content	35
2.2.7. Total nitrogen content (N)	35
2.2.8. Total organic matter content (TOM)	35
2.2.9. Total organic carbon content (TOC)	35
2.2.10. Total phosphourus content (P)	36
2.2.11. Total potassium content (K)	37
2.2.12. Available phosphourus content	37
2.2.13. Soluble cations and anions	37
2.2.14. Cation exchange capacity (CEC)	37
2.3. Extraction of humic substances	37
2.4. Fractionation of humic substances	38
2.5. Determination of major humus components on the basis of	
carbon content (Ciavatta et al., 1990) and calculation of	
humification rate (HR), degree (DH) and index (H1).	38
2.6. Influence of extractants on the yields and selected chemical	
properties of humic acids isolated from marjoram compost	40
2.7. Impact of khan's solution purification treatment on selected	
structural features of humic acids isolated from marjoram	
compost compared to the simple purification method described by	
Kasim <i>et al.</i> (2008).	41
2.7.1. Isolation of HA	41
2.7.2. purification of HA	41
2.7.3. Selected structural features studied for evaluating the two	
purification treatments	42

	Page
2.8. Preparation of a prepared humic-like substance.	42
2.9. Chemical and structural features analysis of purified humic acids	
isolated from different sources and a prepared humic-like	
substance.	44
2.9.1. Ultimate analysis	44
2.9.2. Functional groups analysis	44
2.9.2.1. Determination of total acidity	44
2.9.2.2. Determination of carboxylic group	45
2.9.2.3. Determination of phenolic groups	45
2.9.2.4. Determination of carbonyl groups	45
2.9.2.5. Estimation of the functional oxygen as percentage of total	
oxygen content (Of/O)	45
2.9.3. Spectroscopic analysis	46
2.9.3.1. Ultraviolet -visible (UV-vis) spectroscopic analysis	46
- Estimation of relative aromaticity	46
- Estimation of weight average molecular weight	46
2.9.3.2. Fourier Transform - Infrared (FT-IR) spectroscopic	
analysis	47
2.9.3.3. ¹ H-Nuclear Magnetic Resonance (¹ H-NMR) spectroscopic	47
analysis.	
2.10. Effect of humic acids isolated from marjoram compost (HA_C)	
and more humified material"leonardite"(HAL) in controlling,	
in vitro, the mycellial growth of eight phytopathogenic and	
two antagonistic soil fungi and bacterial growth of two	
antagonistic, bacterial strains.	47
2.10.1. Materials	47
2.10.2 Estimation of fungal growth	48

III

	Page
2.10.3. Estimation of bacterial growth.	49
2.11. Impact of interaction between hmic acids, isolated from	
marjoram compost, and biological control agents on	
Acremonium wilt disease incidence of grain sorghum.	49
2.11.1. Materials.	49
(a) Experimental Soils.	49
(b) Sorghum grains.	50
(c) Microbial candidates.	51
(d) Fungicide.	51
(e) Media used	51
 2.11.2. Phytopathogenic inoculant preparation 2.11.3. Pot experiment. 2.11.3.1. measurement of plant growth. 2.11.3.2. Determination of total N, P and K content of shoots. 2.11.3.3. Estimation of AMF root colonization rate. 2.11.3.4. Assay of soil rhizosphere dehydrogenase activity. 2.11.4. Field experiment. 	52 52 53 53 54 54 55
2.12. Statistical analysis	56
3. Results and discussion	57
3.1. Compost characteristics.	57
3.2. Group composition of humic substances extracted from the six	
locally produced composts.	60
3.2.1. Major humus components content	61
3.2.2. Humified organic carbon and humification parameters.	66
3.3. Influence of concentration of two extractant solutions (NaOH	
and KOH) on yields and selected chemical properties of	
humic acids extracted from marjoram compost (compost C_5).	70
3.4. Impact of khan's solution purification treatment on selected	
structural features of humic acids isolated from marjoram	
compost compared to the simple purification method	76

described by Kasim et al. (2008).

of humic acids isolated from marjoram compost (C_5) 7'	7
3.4.2. Functional groups composition, functional oxygen as	
percentage of total oxygen content (Of/O) and the	
spectrophotometric ratio between the absorbance at 465 and	
665nm (E ₄ /E ₆) of humic acids isolated from marjoram	
compost 8	1
3.5. Analytical characteristics and chemical structure of purified	
humic acids isolated from marjoram compost, more humified	
material "Leonardite", commercial HA products and a	
prepared humic-like substance 80	6
3.5.1. Ultimate analysis and main atomic ratios 8	8
3.5.2. Total acidity, functional groups composition and functional	
oxygen as a percentage of total oxygen content (Of/O) 93	3
3.5.3. Spectroscopic characterization 9'	7
3.5.3.1. Ultraviolet – visible (UV-vis) spectroscopy 95	8
3.5.3.2. Fourier – transform infrared (FT-IR) spectroscopy. 10)4
3.5.3.3. 1 H-nuclear magnetic resonance (1 H-NMR) spectroscopy. 10)9
3.6. Biochemical studies on the importance of humic acids in organic agriculture respecting their chemical structural feature.11	14
3.6.1 Effect of humic acids isolated from marjoram compost and more humified material "Leonardite" in controlling the mycelial growth in vitro eight phytopathogenic and two antagonistic soil fungi and bacterial growth of two	
antagonistic bacterial strains. 11	6
3.6.2. Impact of interaction between humic acids and some	
biocontrol agents on Acremonium wilt disease incidence of grain sorghum (Giza 15).	24
12	

	Page
3.6.2.2. Field experiment	133
Conclusion	140
References	142
Summary	
Arabic summary	
Arabic abstract	

List of Abbreviation

E.C	Electrical Conductivity.
TOC	Total Organic Carbon.
CEC	Cation Exchange Capacity
HR	Humification rate.
DH	Degree of Humification.
HI	Humification Index.
TOM	Total Organic Matter.
TEC	Total Extracted carbon.
PDA	Potato Dextrose Agar.
TPF	2, 3, 5-Triphenyl Formzan.
IPM	Integrated Pest Management.
IFM	Integrated Fertilizer Management.
AMF	Arbuscular Mycorrhizal Fungi.
HAC	Humic Acid Carbon.
FAC	Fulvic Acid Carbon.
NHC	Not Humified Carbon.
HS	Humic Substances.
HA	Humic Acid.
FA	Fulvic Acid.
E_4/E_6	The ratio between the absorbance at 465 and 665 nm.
IHSS	The International Humic Substances Society.
FT-IR	Fourier – transform infrared spectroscopy
¹ H-NMR	¹ H-Nuclear Magnetic Resonance spectroscopy
LE	Local Excitation Band.
BZ	Benzenoid Band.
ET	The Electton – Transfer Band.
E_{280}	Molar Absorptivity at 280 nm.
E 600	Molar Absorpitivity at 600 nm.
PGPR	Plant Growth Promoting Rizobacteria.
λ	Wave length.