ABSTRACT

Abeer Mahmoud Mohammad ' Microbiological studies using recombinant bacterial strain as bioinsecticide against cotton leafworm *Spodoptera littoralis*' Unpublished Ph.D. thesis, University of Ain Shams, Faculty of Agriculture, Department of Agric. Microbiology, 2007.

A total of seven *Bacillus thuringiensis* (*B.t.*) isolates were obtained from thirty-four bacterial collections from different Egyptian soils. Two of these seven isolates were found to be effective against the 2^{nd} instars of *Spodoptera littoralis* larvae. These isolates were named as *B.t.* Mo-I and K-II.

Cry I gene of these strains, which is responsible for insecticidal protein, was identified by polymerase chain reaction (PCR) technique. The morphology of sporangia and parasporal inclusions was differentiated by phase contrast and electron microscope, respectively. It was found that *B.t*.Mo-I produces bi-pyramidal inclusions, whereas K-II produces cubical inclusions.

Recombinant *E. coli* strain, that contains the CryI gene, was tested for its efficacy against the 2^{nd} instar larvae of *Spodoptera littoralis*. It was found to give 70 % mortality of the larvae.

Recombinant *E. coli* was propagated in MR medium, experimentally modified, to obtain the highest yield of cells and δ -endotoxin, using 100 ml medium / 250 ml conical flasks, at 200 rpm on rotary shaker. Maximum cell yield was obtained when sucrose in 20 g/L, and yeast extract were used respectively, as carbon and nitrogen sources, at pH 7.0 and 37°C incubation temperature, for attaining maximum cell yield and at pH 7.5 and 30°C incubation temperature, for producing maximum endotoxin concentration.

The effect of stress conditions on viability and activity of recombinant *E. coli* illustrated that, solar radiation showed a bad effect on both viability and efficacy after 3 days of exposure.

The drastic effect also happened when recombinant *E. coli* was exposed either to heat treatment (at 50° C for more than 5 minutes) or to high concentrations of sucrose (> 20 % for more than 2 days) and for NaCl (> 5 % even after one day of exposure).

The best preservation method, for keeping viability and activity of recombinant *E. coli* against the larvae, was found to be freezing under glycerol, then granulation and finally lyophilization.

Keywords: *Bacillus thuringiensis*, CryI gene, Recombinant *E. coli*, Medium requirements, δ -endotoxin, Genetic stability.

CONTENTS

	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1 Biological control agents	3
2.1.1 The need for biological control agents.	3
2.1.2 Bacillus thuringiensis as a biological control agent	3
2.1.3 Mode of action.	4
2.2 Isolation and identification of <i>B. thuringiensis</i>	4
2.3 Disadvantages of <i>B. thuringiensis</i>	6
2.3.1 Strategies to improve <i>B.t.</i> products	6
2.4 Efficacy of <i>B. thuringiensis</i> and recombinant <i>E.coli</i> against	
Spodoptera littoralis larvae	8
2.5 Mass culturing of recombinant <i>E.coli</i>	11
2.5.1 Nutritional factors	11
2.5.2 Environmental conditions	14
2.6 Effect of some stress conditions on survival of recombinant E.	
coli	15
2.7 Preservation of recombinant <i>E.coli</i>	16
2.7.1 Freezing	16
2.7.2 Lyophilization	17
2.7.3 Encapsulation	18
3- MATERIALS AND METHODS	21
3.1 Microorganisms used	21
3.1.1 Bacillus thuringiensis strains	21
3.1.2 Recombinant <i>E.coli</i>	22
3.2 Media used	22
3.3 Maintenance of cultures	26
3.4 Standard inoculum	26
3.5 Bioassay	27
3.5.1 Rearing of Spodoptera littoralis	27
3.5.2 Toxicity of <i>B.t.</i> isolates	27
3.5.3 Crystalline protein isolation	27
3.5.4 Insect bioassay with δ -endotoxin	28
3.5.5 Statistical analysis of the bioassay data	28

i

3.6 Detection of CryI gene within the tested <i>B.t.</i> preparations	•
using polymerase chain reaction (PCR)	28
3.7 Crystal protein composition.	30
3.8 Crystal morphology and microscopic studies	30
3.8.1 Phase contrast microscope	30
3.8.2 Scanning electron microscope	30
3.9 Mass culturing of recombinant <i>E. coli</i>	31
3.9.1 Standard curve	31
a- Cell counts and biomass determination	31
b- δ -endotoxin determination	31
3.9.2 Selection of suitable medium for <i>E. coli</i> growth and δ- endotoxin production	31
3.9.3 Effect of carbon and nitrogen sources	31
3.9.4 Effect of sugar concentration	32
3.9.5 Effect of inorganic salts	32
3.9.6 Effect of initial pH	32
3.9.7 Effect of incubation temperature	33
3.9.8 Effect of aeration	33
3.9.9 Effect of some by-products	33
3.9.10 Growth parameters	34
3.10 Effect of some stress conditions on recombinant <i>E. coli</i>	35
3.10.1 Effect of solar radiation	35
3.10.2 Effect of high temperature	35
3.10.3 Effect of NaCl concentration	35
3.10.4 Effect of sucrose concentration	36
3.11 Preservation of recombinant <i>E. coli</i> and genetic stability	36
3.11.1 Freezing with glycerol.	36
3.11.2 Lyophilization.	36
3.11.3 Granular formulation	37
3.12 Viability tests	38
3.13 Genetic stability	38
4- RESULTS AND DISCUSSION	39
4.1 Isolation of <i>B.thuringiensis</i> (<i>B.t.</i>)	39
4.1.1 Growth characteristics.	39
4.1.2 Biochemical properties.	40
4.2 Toxicity tests	42
-	

4.2.1 Toxicity of the isolated B.thuringiensis against the 2nd	
instars of Spodoptera littoralis	42
4.2.2 Toxicity of the recombinant <i>E. coli</i> against the 2 nd instars	
of Spodoptera littoralis	46
4.3 Detection of CryI gene using PCR technique	46 46
4.4 Crystal protein composition	49
4.5 Microscopic studies	52
4.5.1 Phase contrast microscope	52
4.5.2 Electron microscope	52
4.6 Mass culturing of recombinant <i>E. coli</i>	55
4.6.1 Standard curve	58
4.6.2 Selection of suitable medium for production	61
4.6.3 Effect of carbon sources	61
4.6.4 Effect of carbon concentration	74
4.6.5 Effect of nitrogen sources	77
4.6.6 Effect of some by-product materials	87
4.6.7 Effect of inorganic salts	87
4.6.8 Effect of environmental conditions	92
a- Initial pH	92
b- Incubation temperature	95
c- Aeration	95
4.7 Determination of viability and activity of recombinant E. coli	
exposed to different stress conditions	101
4.7.1 Effect of solar radiation	101
4.7.2 Effect of high temperature	104
4.7.3 Effect of NaCl concentration	104
4.7.4 Effect of sucrose concentration	107
4.8 Preservation and genetic stability	112
4.8.1 Viability	112
4.8.2 Activity test	115
5- CONCLUSION AND FUTURE PROSPECTS	125
6- SUMMARY.	127
7- REFERENCES.	131
ARABIC SUMMARY.	
ARABIC SUMMARY.	