ABSTRACT

Studies on risk analysis of some organophosphorus pesticides in food.

Mahmoud Abd El-salam El-sayed El-sisi: Unpublished M.Sc Dissertation, Department of Environment and Bio-Agriculture, Faculty of Agriculture, Cairo, Al-Azhar University, 2013.

This study aimed to: (1) monitor the presence and concentrations of a total of 100 pesticides in 608 samples of 19 different vegetables, leafy vegetables and fruits collected from local markets of 8 Egyptian governorates during 2011 season, (2) estimate the potential health risks associated with intakes of each violated pesticide residue on each commodity. A multi residue method based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) was used for sample preparation and gas chromatography coupled to mass spectrometry (GC-MS/MS) and liquid chromatography coupled to mass spectrometry (LC-MS/MS) was adopted for the analysis of pesticide residues.

The results obtained indicated that 50.2% of all samples were contaminated with pesticides, and 17.43% contained pesticide residues above the maximum residue limits (MRLs). Results illustrated that the most common pesticide residues found were carbendazim (95 samples), chlorpyrifos (77 samples), λ -cyhalothrin (70 samples), profenofos (63 samples), sulfur (40 samples), and malathion (29 samples).

The most frequently pesticides found above the MRL for the whole samples were profenofos (17 samples), carbendazim (15 samples) and malathion (15 samples), ethion (12 samples), dimethoate (9 samples), and chlorpyrifos (8 samples). On the whole, orange reported the highest percentage of positive samples (93.75%), followed by pepper (90.62%), cucumber (84.37%), grape (81.25%), apple (65.62%), tomato (62.5%), green beans (53.12%), potato (53.12%), eggplant (43.75%) and green parsley (43.75%). MRL values were exceeded most often in orange (46.88%) followed by green parsley (40.63%), grape leaf (31.25%) and cucumber (25%). In contrast, no violated pesticides were found in watermelon and mango samples. About 24.84% of the positive samples contained organophosphorus compounds followed by benzimidazole (18.26%), pyrethroid (15.13%) and carbamate (7.07%).

The results of Estimated Daily Intake (EDI) were far below the acceptable daily intake (ADI) as established by FAO/WHO, which indicated that consumption of vegetables, leafy vegetables and fruits from Egyptian markets were at little risk to human health in term of violated pesticides in this study at present. The most critical pesticides were phenthoate on potato, methamidophos on grape, carbaryl on potato, γ -HCH on potato and omethoate on orange which contribute 42.84, 22.13, 11.64, 9.66 and 8.8% of the hazard index (HI), respectively.

CONTENTS

1. INTRODUCTION	1
2. REVIEW OF LITERTURE	3
3. MATERIALS AND METHODS	29
3.1. Monitored pesticides	29
3.2. Reagents	43
3.3. Apparatus	44
3.4. Sampling	45
3.5. Extraction and clean up	45
3.6. Determination	48
3.6.1. LC-MS/MS analysis	48
3.6.2. GC-MS/MS analysis	48
3.6.3. Calculation	49
3.7. Quality assurance	49
3.8. Estimated daily intake of violated pesticides	60
4. RESULTS AND DISCUSSION	61
4.1. Monitoring of pesticide residues in vegetables and	61
estimating the potential health risks associated with the	
exposure to violated pesticides	
4.1.1. Monitoring of pesticide residues in cantaloupe	61
Estimated daily intake of violated pesticides on cantaloupe	62
4.1.2. Monitoring of pesticide residues in cucumber	63
Estimated daily intake of violated pesticides on cucumber	65
4.1.3. Monitoring of pesticide residues in eggplant	65
Estimated daily intake of violated pesticides on eggplant	67
4.1.4. Monitoring of pesticide residues in green bean	67
Estimated daily intake of violated pesticides on green bean	69
4.1.5. Monitoring of pesticide residues in pepper	69
Estimated daily intake of violated pesticides in pepper	71
4.1.6. Monitoring of pesticide residues in potatoes	72
Estimated daily intake of violated pesticides on potatoes	74
4.1.7. Monitoring of pesticide residues in squash	75
Estimated daily intake of violated pesticides in squash	77

4.1.8. Monitoring of pesticide residues in strawberry	77
Estimated daily intake of violated pesticides on strawberry	79
4.1.9. Monitoring of pesticide residues in tomato	80
Estimated daily intake of violated pesticides on tomato	82
4.1.10. Monitoring of pesticide residues in watermelon	82
4.2. Monitoring of pesticide residues in leafy vegetables and	86
estimating the potential health risks associated with the	
exposure to violated pesticides	
4.2.1. Monitoring of pesticide residues in grape leaf	86
4.2.2. Monitoring of pesticide residues in green parsley	87
4.2.3. Monitoring of pesticide residues in molokhia	89
4.2.4. Monitoring of pesticide residues in water cress	90
Estimated daily intake of violated pesticides on water cress	91
4.3. Monitoring of pesticide residues in fruits and estimating	95
the potential health risks associated with the exposure to	
violated pesticides	
4.3.1 Monitoring of pesticide residues in apple	95
Estimated daily intake of violated pesticides in apple	97
4.3.2 Monitoring of pesticide residues in banana	97
Estimated daily intake of violated pesticides in banana	99
4.3.3 Monitoring of pesticide residues in grape	100
Estimated daily intake of violated pesticides in grape	102
4.3.4 Monitoring of pesticide residues in mango	103
4.3.5 Monitoring of pesticide residues in orange	105
Estimated daily intake of violated pesticides in orange	107
5. SUMMARY	119
6. REFERENCES	124
7. ARABIC SUMMARY	