ABSTRACT

The present study was carried out to develop and construct a rubbing thresher suiting to some seed crops, in addition to evaluate the performance of the developed thresher by threshing two different crops such as flax and sunflower crops. The performance was evaluated in items of threshing losses, threshing efficiency, visible and invisible seed damage, flax stalk losses, machine productivity, power requirement, and specific energy consumption as a function of change in drum speed, belt speed, concave clearance, and moisture content. The flax experiment was carried out by testing the drum speed at four levels of 4.2, 5.5, 6.4, and 7.3 m/s, four levels of belt speed of 0.42, 0.67, 0.96, and 1.25 m/s, three levels of concave clearance of 1.5, 2.5, and 4.0 cm, and three moisture contents of 11.38, 14.75, and 18.64% w.b. In addition, the sunflower experiment was carried out at the same levels of drum speed and belt speed addition to other three levels of concave clearance of 2.5, 4.0, and 5.5 cm, and three levels of moisture content of 10.51, 16.28, and 20.11% w.b. The results revealed that the threshing efficiency was increased by increasing drum speed, and by decreasing each of belt speed, concave clearance and moisture content. The results showed also that, the drum speed of 7.3 m/s, belt speed of 0.42 m/s, concave clearance about 1.5 cm, and moisture content about 11.38% were the optimum conditions for threshing flax crop. In addition, the optimum conditions for threshing sunflower by the rubbing thresher were 7.3 m/s, 0.42 m/s, 2.5 cm, and 10.51% of drum speed, belt speed, concave clearance, and moisture content respectively.

الموجز

تهدف هذه الدراسة لتطوير آلة دراس لتناسب دراس بعض محاصيل البذور تعتمد على نظرية الاحتكاك، وتقييم أداء تلك الآلة على در اس محصولي الكتان وعباد الشمس باختبار بعض العوامل التشغيلية مثل سرعة درفيل الدراس، وسرعة سير الدراس، والخلوص بين الدرفيل والسير وكذلك المحتوى الرطوبي عند الدراس، وذلك في تجربتين منفصلتين بناءً على نوع المحصول في التجربة الأولى تم دراس محصول الكتان عند أربع مستويات من سرعة الدرفيل ٤,٢، ٥,٥، ٦,٤، ٧,٣ م/ث وأربع مستويات من سرعة سير الدراس ٠٠,٤٢، ٢٧,٠٠، ١,٢٥، ١,٢٥ م/ث وثلاث مستويات من مسافة الخلوص ١,٥، ٢،٥، ٤،٠ سم وأيضاً ثلاث مستويات من المحتوى الرطوبي للكبسولات وهم ١١,٣٨، ١٤,٧٥، ١٨,٦٤ (على أساس رطب). في التجربة الثانية تم در إس محصول عباد الشمس عند نفس المستويات السابقة من سرعتى الدرفيل والسير وثلاث مستويات أخرى من مسافة الخلوص ٥,٥، ٤,٠، ٥,٥ سم وأيضاً ثلاث مستويات أخرى من المحتوى الرطوبي ١٠,٥١، ٢٠,١١، ١٦,٢٨ (على أساس رطب) وقد أظهرت النتائج أن أعلى كفاءة دراس وإجمالي أقل تكاليف معيارية وأقل فاقد أثناء دراس محصول الكتان كان عند سرعة درفيل ٧,٣ م/ث وسرعة سير ٢,٤٢ م/ث ومسافة خلوص ١,٥ سم ومحتوى رطوبي ١١,٣٨%. وأيضاً كانت أعلى كفاءة در اس وإجمالي أقل تكاليف معيارية وأقل فاقد أثناء دراس محصول عباد الشمس عند سرعة درفيل ٧,٣ م/ث وسرعة سير ٠,٤٢ م/ث و مسافة خلوص ۲٫۵ سم و محتوی ر طوبی ۱۰٫۰۱%.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	
2.1 Threshing Mechanisms	3
2.2 Usability of Rubbing Action in Threshing Operation	4
2.4 Factors Affecting Threshing Operation	6
2.4.1 Drum speed	6
2.4.2 Threshing moisture content	14
2.4.3 Feeding rate	17
2.4.4 Drum – concave clearance	19
2.5 Flax Threshing	21
2.6 Sunflower Threshing	27
2.7 Power and Energy Requirements	31
3. MATERIALS AND METHODS	
3.1 Materials	34
3.1.1 The threshing machine before modifying	34
3.1.2 The threshing machine after modifying	36
3.1.3 The used crops	41
3.2 Methods	43
3.2.1 Experiment Procedure	43
3.2.1.1 Flax Experiment	43
3.2.1.2 Sunflower Experiment	44
3.2.2 Measuring instruments	45
3.2.3 Experimental measurements	46
3.2.3.1 Threshing moisture content	46
3.2.3.2 Seed-stalk ratio of flax	46

	Page
3.2.3.3 Threshing losses	47
3.2.3.4 Threshing efficiency	49
3.2.3.5 Threshing productivity	49
3.2.3.6 Power and energy requirements	50
3.2.3.7 Cost analysis	50
4. RESULTS AND DISCUSSION	
4.1 The Performance Characteristics of the Modified	
Thresher	53
4.1.1 Threshing losses	53
4.1.1.1 Effect of drum speed on threshing losses	54
4.1.1.2 Effect of belt speed on threshing losses	54
4.1.1.3 Effect of concave clearance on the	
threshing losses	55
4.1.2 Threshing efficiency	58
4.1.2.1 Effect of drum speed on threshing efficiency	58
4.1.2.2 Effect of belt speed on threshing efficiency	
4.1.2.3 Effect of concave clearance on threshing	
efficiency	60
4.1.3 Flax stalk losses	62
4.1.3.1 Effect of drum speed on flax stalk losses	62
4.1.3.2 Effect of belt speed on flax stalk	63
4.1.3.3 Effect of concave clearance on flax stalk	
losses	63
4.1.4 Visible and invisible seed damage	64

I	Page
4.1.4.1 Effect of drum speed on visible seed damage of sunflower	65
4.1.4.2 Effect of belt speed on visible seed	
damage of sunflower	66
4.1.4.3 Effect of concave clearance on visible	
seed damage of sunflower	67
4.1.5 The machine productivity	69
4.1.5.1 Effect of drum speed on machine productivity	69
4.1.5.2 Effect of belt speed on machine productivity	71
4.1.5.3 Effect of concave clearance on machine	/1
productivity	72
4.1.6 The required power for threshing operation	74
4.1.6.1 Effect of drum speed on the required	/ -
power	75
4.1.6.2 Effect of belt speed on the required	
power	76
4.1.6.3 Effect of concave clearance on the	
required power	77
4.1.7 The specific energy requirement for threshing	
machine	80
4.1.7.1 Effect of drum speed on the consumed	
energy	81
4.1.7.2 Effect of belt speed on the consumed	
energy	82

J	Page
4.1.7.3 Effect of concave clearance on the	
consumed energy	83
4.2 Effect of Crop Moisture Content on Threshing	
Operation	86
4.2.1 Effect of moisture content on the threshing	
losses	86
4.2.2 Effect of moisture content on threshing efficiency	87
4.2.3 Effect of moisture content on flax stalk losses	89
4.2.4 Effect of moisture content on visible and	
invisible seed damage	90
4.2.5 Effect of moisture content on threshing machine	
productivity	92
4.2.6 Effect of moisture content on the required power	94
4.2.7 Effect of moisture content on the consumed	
specific energy	96
4.3 The Cost Analysis	98
4.3.1 The operational cost of threshing operation	98
4.3.2 The criterion cost of threshing operation	99
5. SUMMARY AND CONCLUSION	104
6. REFERENCES	111
7. APPENDIX	122