ABSTRACT

Abdel-gawad Mohammed Abdel-gawad Saad: Design and Development of Unit for Extracting Wheat Germ Oil. Unpublished Ph.D. Thesis. Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2012.

An expelling machine for extracting oil from wheat germ was designed and fabricated to be suitable for young investors. The procedures include the design stages, construction and testing. The main machine components are: Hopper (feeding inlet); expellant unit and an electric motor. The power is transmitted by means of a set of pulleys; sprockets; V-belt; chain and speed reducer (gear box). The expelling unit consists of two screw expellant shafts with two expellant barrels.

The expelling machine evaluated at five screw speeds (25, 35, 45, 55, and 65 rpm); four levels of press head clearance (0.5, 1, 1.5, and 2 mm); studying influence of the preheating process (in the range of 60-70°C) by the water at different atmospheric steaming periods (0, 10, 20, and 30 min) to change the initial moisture content of raw material (13.2%) to different levels (15.4, 16.2, and 16.8%). and influence of heating stabilization process (9.5% of moisture content) on expelling machine performance to determine the best Machine capacity (kg/h); Oil recovery Residual productivity(L/h); Specific energy (%); oil (%); Oil consumption (kWh/kg_{feed}); and Barrel temperature(°C). also, determine the economic feasibility for developed expelling machine.

Results showed that the expeller could be pressed wheat germ on two stages to give a better performance at as following.

- The maximum machine capacity (42.6 kg/h) was obtained from stabilized wheat germ (9.5% moisture content) at 2mm outlet clearance and 65 rpm of screw speed.
- 2- The maximum oil recovery (63%) was obtained from stabilized wheat germ (9.5% moisture content) at 0.5mm outlet clearance and 25 rpm of screw speed.

- 3- The maximum oil productivity (2.36 L/h) was obtained from stabilized wheat germ (9.5% moisture content) at 2mm outlet clearance and 65 rpm of screw speed.
- 4- The minimum SEC (0.0304 kWh/kg_{feed}) was found from wheat germ (13.2% moisture content) at 2mm outlet clearance and 65 rpm of screw speed.
- 5- The minimum barrel temperature (51.1°C) was found from raw wheat germ (13.2% moisture content) at 2mm outlet clearance and 25 rpm of screw speed.

Keywords: Oil Extraction, Expelling machine Design, Wheat Germ Oil, Economic Feasibility.

	LIST OF CONTENTS	Page
1.	INTRODCUTION	1
2.	REVIEW OF LITERATURES	3
2.1.	Wheat germ	3
2.1.1.	Grain Structure	4
2.1.2.	Germ Recovery	5
2.1.3.	Physical and mechanical properties of wheat germ	6
2.2.	Wheat Germ Oils (WGO)	7
2.2.1.	Wheat Germ Oil Content	8
2.2.2.	Wheat Germ Oil Properties.	9
2.2.3.	Fatty Acid Composition	10
2.2.4.	The importance of wheat germ oil and uses	12
2.3.	Pretreatment methods for extracting crude oil from wheat	
	germ	15
2.3.1.	Stabilization process.	15
2.3.2.	Steaming process.	17
2.4.	Oil Extraction.	18
2.4.1.	Mechanical Extraction	18
2.4.1.1.	History and applications	18
2.4.1.2.	Hydraulic Pressing	20
2.4.1.3.	Expeller Extraction	21
2.4.1. 4.	Advantages and disadvantages of mechanical extraction	28
2.4.2.	Solvent Extraction	29
2.4.2.1.	Advantages and disadvantages of solvent extraction	32
2.4.3.	Extraction by Supercritical Carbon Dioxide	32
2.5.	Energy	34
2.6.	Machinery Costs	35
2.6.1.	Ownership costs	36
2.6.2.	Operating costs	36
3.	THEORETICAL CONSIDERATION	38
3.	Theoretical Detail Design Calculations	38
3.1.	Design of expeller machine	38

3.1.1.	Function)
3.1.1.1.	Oil flow through cell wall pores)
3.1.1.2.	Oil flow in the inter-kernel voids. 40)
3.1.1.3.	Consolidation of the oil wheat germ cake)
3.2.	Important Design Inputs. 40)
3.2.1	Hopper)
3.2.2	Screw Shaft. 42	2
3.2.2.1	Screw Parameters	3
3.2.3.	Stress analysis	5
4.	MATERIAL AND METHODS 49)
4.1.	MATERIALS)
4.1.1.	Wheat Germ)
4.1.2.	Expelling Machine Description)
4.1.2.1.	Main frame)
4.1.2.2.	Hopper	2
4.1.2.3.	Barrel (Cage)	2
4.1.2.4.	Screw Shaft	5
4.1.2.5.	Flange	7
4.1.2.6.	Conical choke mechanism for cake drainage	3
4.1.2.7.	Power transmission)
4.2.	DEVICES AND MEASURING INSTRUMENTS	l
4.2.1.	Angle of repose meter61	l
4.2.2.	Tachometer 61	l
4.2.3.	Clamp meter	2
4.2.4.	Drying oven	2
4.2.5.	Infrared thermometer	3
4.2.6.	Heat stabilization unit 63	3
4.2.7.	Atmospheric steaming unit	1
4.3.	METHODS	5
4.3.1.	Measuring true density, and bulk density of wheat germ 65	5
4.3.2.	Repose angle of wheat germ 60	5
4.3.3.	Experimental treatments	5

4.3.3.1.	Atmospheric steaming process	66
4.3.3.2.	Stabilization of wheat germ	67
4.3.4.	Determination of moisture content	67
4.3.5.	Machine capacity (kg feed/h)	68
4.3.6.	Determination of oil recovery (%)	68
4.3.7.	Determination of residual oil percentage	68
4.3.8.	Oil productivity	69
4.3.9.	Total specific Energy Consumption (SEC)	70
4.3.10.	Barrel temperature	71
4.3.11.	Cost estimation	71
4.3.12.	Economic feasibility	72
5.	RESULTS AND DISCUSSION	73
5.1.	Effect of atmospheric steaming process for wheat germ on	
	machine capacity (kg feed/h)	73
5.2.	Effect of heating treatment (stabilization process) for wheat	
	germ on machine capacity (kg feed/h)	77
5.3.	Effect of atmospheric steaming process for wheat germ on oil	
	recovery (%)	77
5.4.	Effect of heating treatment (stabilization process) for wheat	
	germ on oil recovery (%)	82
5.5.	Effect of atmospheric steaming process for wheat germ on	
	residual oil (%)	83
5.6.	Effect of heating treatment (stabilization process) for wheat	
	germ on residual oil (%)	87
5.7.	Effect of atmospheric steaming process for wheat germ on oil	
	productivity, (L/h)	87
5.8.	Effect of heating treatment (stabilization process) for wheat	
	germ on oil productivity, (L/h)	91
5.9.	Effect of atmospheric steaming process for wheat germ on	
	specific energy consumption (SEC) (kWh/kg feed)	92
5.10.	Effect of heating treatment (stabilization process) for wheat	
	germ on specific energy consumption (SEC) (kWh/kg feed)	95

5.11.	Effect of atmospheric steaming process for wheat germ on	
	barrel temperature, °C	96
5.12.	Effect of heating treatment (stabilization process) for wheat	
	germ on barrel temperature, °C	100
5.13.	Oil extraction operation costs	103
5.14.	Economic feasibility of the developed expelling machine	103
6.	SUMMARY AND CONCULUSION	105
7.	REFERANCES	115
	ANNEX	
	ARABIC SUMMARY	

V	The flow rate of fluid, m ³ /sec.
R	Pore radius, m
ΔP	Pressure drop across a pore of length, Pa
L	Pore length, m
μ	Coefficient of viscosity, Pa.sec
L _p	Hydraulic conductivity of plasmodesmate, m ³ /sec. Pa
q	The flow rate of fluid
k	The coefficient of permeability
ρ	Fluid density
g	Gravitational acceleration
Δu	Hydraulic gradient in the fluid (pressure difference Δu over
Δz	distance ΔZ).
$\sigma_{_t}$	Total applied pressure,
$\sigma_{_i}$	Kernel pressure; the pressure carried by the medium skeleton
U	Inter-kernel fluid pore pressure; the pressure carried by the
	medium fluid
QT	Theoretical volumetric flow rate of wheat germ, cm ³ /h.
ṁ	The maximum required mass flow rate
$ ho_{g}$	Wheat germ bulk density, g/cm ³
η_f	Feeding efficiency
η_v	Hopper volume efficiency
t _{int}	Time interval between filling and re-filling up the hopper
\mathbf{Q}_{act}	Actual volumetric flow rate of wheat germ, cm ³ /h
V_{H}	The hopper actual volume, cm ³
D_h	Upper hole diameter of the hopper, cm.
$\mathbf{h}_{\mathbf{h}}$	Height of hopper, cm.
Х	Sidelong length of the hopper, cm
θ	The inclination angle of hopper
φ	The repose angle.
Р	Screw pitch
Ν	Number of turns of screw.

LIST OF SYMBOLS

Ls	The axial length of the screw shaft.
ds	Outer diameter of screw shaft.
1	Lead of screw.
λ	Lead angle
L _t	The thread length of the screw of one turn.
L_{T}	The total thread length (helix length).
Ζ	Variable distance measured along screw helix
α	Taper angle of the screw shaft.
H_1	Height of the thread at the starting point of the turns of the screw
	shaft, mm.
H_2	Height of the thread at the end point of the turns of the screw
	shaft, mm
T_s	Torque of the screw shaft, Nm.
Р	The power requirement for extraction oil process, W
Vdisplacement	Volume displacement per one revaluation, m ³
P_2	The maximum presser applied on the threads, MPa
F_a	The maximum unit force applied on the threads, N
t	Thread width, mm
r	The radius to the inner diameter of screw shaft, mm $(d_1/2)$;
d_1	Smallest diameter of the screw shaft, mm.
J	Polar moment of inertia of circular cross section, mm ⁴
\mathbf{K}_{f}	Stress concentration factor
M _s	Moment at the most critical cross section arising from the
	weight of the screw shaft.
R _s	Reaction forces acting on the screw shaft at two ends.
W_s	Weight of the screw shaft, N.
$ au_{max}$	Maximum shear stress, MPa
${\boldsymbol \delta}_{s}$	Yield strength
$ ho_t$	The true density of the bulk wheat germ material, Kg/m^3 ;
М	Weight of the bulk wheat germ sample, Kg
V_t	Real volume of the bulk wheat germ sample, m ³
BD	Bulk density of wheat germ, kg/mm ³

W _{Bulk}	Weight of bulk wheat germ, kg
V _{Bulk}	Volume of bulk wheat germ, mm ³ .
W_{T}	Weight of sample before drying, g
W_D	Wheat of sample after drying, g
P _m	Machine capacity, kg/h.
W	Machine feeding, kg
t_0	Machine operating time, h
W _C	Mass of cake, kg.
O _C	Oil content of cake, kg
\mathbf{W}_{m}	Mass of sample, kg
Om	Initial oil content of sample, kg
Ι	Line current strength, Amperes.
\mathbf{V}_0	Potential difference, Voltage
$\cos \theta$	Power factor, equal 0.85
SEC_1	Specific energy consumption of expelling machine
SEC_2	Specific energy consumption needed for steam generation in
	the steaming unit or for heating in rotary heat stabilization unit
SEC	Total specific energy consumption of wheat germ oil extraction
C_{gas}	Natural gas consumption by m ³
T _c	Total hourly cost, EGP/h.
С	Initial price of the machine, EGP.
h	Working hours per year.
L_{f}	The estimated life-expectancy of machine in years.
i	Annual interest rate, (0.1 of initial cost)
t _a	Annual taxes and overheads, (0.01 of initial cost).
r _a	Annual repairs and maintains rate, (0.1 of initial cost).
S_1	Price of electricity, EGP/kWh.
S_2	Price of natural gas, EGP/m^3 .
$\mathbf{P}_{\mathbf{m}}$	Machine capacity kg/h.
m _s	The operator monthly salary, EGP/month