ABSTRACT

Ten pathogenic isolates of *Macrophomina*. phaseolina, the causal pathogen of charcoal rot disease, were isolated from naturally diseased plants in five governorates. The results indicated that the harmful effects that induced by the different tested isolates of *M. phaseolina* were occurred actually during seadling stage causing (the pre- and/or post-emergence stages as well as during maturity (development of charcoal rot). The sesame isolate (M4) exhibited the highest disease incidence pathogenicity test. Trichoderma viride-1 through and Trichoderma sp. (No. 5) were the most antagonistic fungi, whereas Bacillus subtilis and Pseudomonas flurescense were the best antagonistic bacteria for limiting growth of Macrophomina isolates on agar plates. As for the aqueous filtered and autoclaved extracts, cumin (Cuminum cyminum) and thyme (Thymus vulgaris) as well as cumin and clove (Eugenia *caryophyllus*) caused the highest suppressive effect on the linear growth of 3 isolates of M. phaseolina. meanwhile commercial plant oil of cumin and marjoram(Majorana hortensis) caused the highest suppressive effect on the linear growth of 3 isolates of M. phaseolina. Trichoderma virdi-1 followed by Trichoderma harzianum and Trichoderma sp. No. 5 were the best antagonistic fungi. Bacillus subtilis and Pseudomonas flurescense were the best antagonistic bacteria for controlling disease incidence at seedling and/or maturity stages. Maxim and Rizolex-T, as seed treatment, were the best fungicidal treatments, whereas, Plant guard and Bio-Zied were the best commercial biocontrol for controlling infection with M. phaseolina on sesame plants under greenhouse conditions. The best control of charcoal rot disease

on sesame plants could be obtained by soaking sesame seeds in filtered extracts of cumin, thyme and garlic or autoclaved extracts of cumin and clove. Salicylic acid (SA) at (2&4mM) and cobalt chloride (CoCl₂) at 1&2mg/l were the most effective chemical inducers for reducing damping off and charcoal rot disease on sesame plants. The activity of some oxidative enzymes *i.e.* peroxidase and polyphenol oxidase, the amounts of phenol contents and sugars content were obviously higher in tissues of sesame plants that were grown from seeds treated with any of the tested chemical inducers than those grown from untreated seeds (control). Salicylic acid (SA) at 2&4mM and cobalt chloride (CoCl₂) at 1&2mg/l were the most effective chemical inducers for increasing activity of oxidative enzymes *i.e.* peroxidase and polyphenol oxidase and the amounts of phenol contents and sugars content. Several various treatments were effective in controlling charcoal rot disease and increasing seed yield production of sesame, under field conditions in two successive seasons 2009 and 2010. Shandaweel 3, Sohag 1, and Taka 2 were the least susceptible cultivars. Pseudomonas flurescense and Trichoderma viride-2 were the best antagonistic microorganisms. Maxim was the best chemical fungicide while Bio-Zeid was the best biocontrol. Cumin plant oil and filtered extract of garlic proved to be the best plant extracts. Oxalic acid at 4mM and SA at 2mM were the most effective organic acids, while cobalt chloride at 2mg/l and 1mg/l and calcium chloride at 8mM were the superior mineral salts treatments mineral salts for reducing incidence of charcoal rot and increasing seed yield production.

CONTENTS

		Page
1. II	NTRODUCTION	1
2. R	EVIEW OF LITERATURE	3
3. M	IATERIALS AND METHODS	34
4. R	ESULTS AND DISCUSSION	54
Ι	Isolation, purification and identification of the	
	causal organism(s)	54
II	Pathogenicity tests for different isolates of M.	
	phaseolina	56
III	Reaction of sesame cultivars against infection with	
	charcoal rot disease, under greenhouse conditions	58
IV	Control studies	
1.	In vitro experiments	
	1.1. Effect of some selected fungal and bacterial	
	isolates on the growth of the virulent,	
	moderately and weakly pathogenic isolates of	
	<i>M. phaseolina</i> on PDA medium	62
	1.1.1. Effect of antagonistic fungi on growth of M .	
	phaseolina	62
	1.1.2. Effect of some antagonistic bacteria on	
	growth of <i>M. phaseolina</i> isolates	66
	1.2. Effect of Plant extracts and oils on the linear	
	growth of <i>M. phaseolina</i> isolates	68
	1.2.1. Effect of filtered and autoclaved watery plant	
	extracts on reduction percentage of M.	
	phaseolina growth	68

	1.2.1.1. Effect of different watery extraction	
	methods of some plants on reduction	
	percentage of the virulent isolate (M4)	
	growth	68
	1.2.1.2. Effect of different watery extraction	
	methods of some plants on linear growth	
	of moderately isolate (M7)	71
	1.2.1.3. Effect of different watery extraction	
	methods of some plants on linear growth of	
	the weak isolate (M9)	71
	1.2.1.4. Effect of some oil plants on linear growth of	
	phaseolina isolate	76
2.	Greenhouse experiments	
	2.1. Effect of treating sesame seeds with some	
	antagonistic fungi and bacteria on incidence of	
	charcoal rot disease	80
	2.1.1. Effect of treating sesame seeds with some	
	antagonistic fungi	80
	2.1.2. Effect of treating sesame seeds with some	
	antagonistic bacteria	83
	.2. Effect of method of application of some	
	commercial biocides and fungicides on sesame	
	charcoal rot disease	86
	.3. Effect of watery plant extracts and commercial	
	plant oils on controlling the incidence of	
	charcoal rot disease on sesame plants	89
	2.3.1.Effect of filtered and autoclaved watery plant	
	extracts	89

	2.3.2. Effect of commercial plant oils	93
	2.4. Effect of some chemical compounds as inducer	
	resistance on the incidence of sesame charcoal-	
	rot disease and the associated biochemical	
	changes	95
	2.4.1. Effect on incidence of charcoal rot disease on	
	sesame plants	95
	2.4.1.1. Effect of some organic acids at different	
	concentrations as inducer resistance	95
	2.4.1.2. Effect of some mineral salts, as inducer	
	resistance	98
	2.4.2. Effect of applying chemical compounds at	
	different concentrations as seed soaking	
	treatments on stimulation of the natural	
	defense mechanisms in sesame plants	102
	2.4.2.1. On activities of the oxidative enzymes	102
	2.4.2.1.1. Effect of some organic acids	102
	2.4.2.1.2. Effect of some mineral salts	105
	2.4.2.2. Effect on phenols content	105
	2.4.2.2.1. Effect of some organic acids	105
	2.4.2.2.2. Effect of some mineral salts	108
	2.4.2.3. Effect on sugar contents	110
	2.4.2.3.1. Effect of some organic acids	110
	2.4.2.3.2. Effect of some mineral salts	110
3.	Field experiments:	
	3.1. Reaction of different sesame cultivars and their	
	seed yield production against natural infection	

with charcoal rot disease, under field conditions. 114

iii

3.2. Effect of some antagonistic fungi and bacteria	
as seed coating on charcoal rot disease	
incidence and seed yield (g./plot) of sesame	
under field conditions	118
3.3. Effect of some commercial seed dressing	
biocides and fungicides on the incidence of	
sesame charcoal rot disease and total seed yield,	
under field conditions	122
3.4. Effect of some plant extracts and commercial	
plant oils on the incidence of charcoal rot	
disease and total sesame seed yield under field	
conditions	126
3.5. Influence of some chemical inducers at certain	
concentrations on the incidence of sesame	
charcoal rot and seed yield production	129
3.5.1. Effect of some organic acids	129
3.5.2. Effect of some mineral salts	133
5. SUMMARY AND CONCLUSION	137
6. REFERENCES	146
ARABIC SUMMARY	