<u>ABSTRACT</u>

COMPARATIVE STUDY OF SOME METHODS FOR NUTRIENT EXTRACTION IN SOME EGYPTIAN SOILS.

Purpose:

This work aims to study the evaluation of P, K, Fe, Mn and Zn availability in some Egyptian soils and test the suitability of some methods, which are used to extract these nutrients under Egyptian soils conditions. Also, stepwise regression analysis was run to define the indigenous soil parameters affect vigorously on the amounts of available P, K, Fe, Mn and Zn extracted by the different extractants used.

Materials and methods:

To carry out this study, 5 methods were chosen for extracting available phosphorus and potassium for the studied soils. Also, 5 methods were chosen for extracting available Fe, Mn and Zn.

Also, a pot experiment was carried out to study the correlations between the amount of available nutrients extracted by different extractants used and their concentrations in barley plants.

Results:

The obtained results could be summarized for nutrients under study as follows:

Phosphorus:

The powerful of the extraction solutions of available-P could be arranged in descending order: Warren & Cooke, (1962), Knudsen et al, (1982) and Soltanpour & Schwab,

(1977). Also Available – p extracted by Soltanpour & Schwab (1977) was highly correlated with P- concentration in barley plants (r = 0.603**) than the other methods.

Potassium:

The powerful of the extraction solutions of available - k could be arranged in the order of: Knudsen et al, (1982) followed by Warren & Cook (1962). Also K-extracted by Knudsen et al (1982) and Warren &Cooke (1962) were highly correlated with k – concentration in barley plants followed by Soltanpour & Schwab (1977). While the best significant correlation was noticed with Bray & Kurtz method (1945) the r-values were $0.469^{**}, 0.467^{**}, 0.414^{**}, and 0.315^{*},$ respectively.

Iron:

The powerful of the extraction methods of available -Fe could be arrange in the descending order: Lakenen & Ervio, 1971; Knudsen et al 1982 and Soltanpour and Schwab (1977). Also, the highest correlation between Fe- concentration by barley plants and Fe- extracted by Knudsen et al (1982) with $r = 0.350^{**}$, while the lowest correlation was noticed by using Lakenen & Ervio (1971) with $r = 0.262^{*}$.

Manganese:

So, the powerful of the extraction methods of available -Mn could be arranged in the descending order: Lakenen & Ervio, 1971 Olsen & Carlson 1950, Soltanpour and Schwab 1977 ,Lindsay & Norvell, 1978 and Knudsen et al, 1982. Also Mn-concentration in barley plants significantly correlated with all Mn – extractability in the following order: - Olsen & Carlson, 1950 (r= 0.602^{**}) >Lakenen & Ervio, 1971 (r= 0. 460**) > Soltanpour & Schwab, 1977(r=0.262*) >Lindsay & Norvell, 1978 (r= 0.256 *) = Knudsen et al (1982). Zinc:

The powerful of the extraction methods of available- Zn could be arranged in the order of: - Lakenen & Ervio, 1971 followed by Knudsen et al, 1982. Also Zn -concentration in barley plants significantly correlated in positive trend with available -Zn extracted by all extractants used. The highest correlation was with Knudsen et al., (1982), with achieved r= 0.527^{**} , while the lowest correlation was found incase of Zn-extracted with Lakenen & Ervio., (1971) r= 0.289^{*} .

<u>CONTENTS</u>

	Page
I- INTRODUCTION	1
2 - REVIEW OF LITERATURE	3
2.1. Status of some macronutrients in soil	3
2.1.1 Phosphorus	3
2.1.1.1 Some factors affecting phosphorus availability	5
2.1.1.2 Soil phosphorus extraction procedures	7
2.1.2.Potassium	10
2.1.2.1 Some factors affecting potassium availability	11
2.1.2.2 Soil potassium extraction procedures	12
2.2. Status of some micronutrients elements	15
2.2.1.Iron	15
2.2.1.1 Some factors affecting Iron availability	16
2.2.2.2 Soil Iron extraction procedures	18
2.2.2.Manganese	20
2.2.2.1 Some factors affecting Manganese availability	21
2.2.2.2 Soil Manganese extraction procedures:	23
2.2.3.Zinc	24
2.2.3.1 Some factors affecting Zinc availability	26
2.2.3.2 Soil Zinc extraction procedures	27
3. MATERIALS AND METHODS	29
3.1 Sampling	29
3.2. Experimental chemical extraction methods	29
3.2.1. Extraction solutions of available macronutrients .	29
3.2.2. Extraction solutions of available micronutrients	30
3.2.3. Available macro and micronutrients in soils using different reagent follows	31
3.3. Pot experiment	35

3.4. Methods of chemical analysis	35
3.4.1. Soil analysis	35
3.4.2. Plant analysis	36
3.4.3. Statistical analysis	37
4- RESULTS AND DISCUSSION	38
4.1. Evaluation of P- extractability	38
4.1.1.Assessment of different methods used for	38
extracting Phosphorus:	
4.1.2.Correlations between soil available phosphorus	
(ppm) extracted by different methods and some	41
soil characteristics	
4.1.2.1. Correlations with CaCO ₃ % in soil	41
4.1.2.2. Correlations with EC of soil paste and soil pH .	42
4.1.2.3. Correlations with soil organic matter	44
4.1.2.4. Correlations with the components of soil	44
texture	
4.1.3 Assessment the most effective soil parameters on	
different methods of extraction available -P by	45
using stepwise regression analysis	
4.1.4: Correlations between P (%) of barley plants and	46
P – extracted with different methods	
4.2. Evaluation of K- extractability	50
4.2.1.Assessment of different methods used for	50
extracting potassium	
4.2.2.Correlations between soil available potassium	
(ppm) extracted by different methods and some	54
soil characteristics	
4.2.2.1. Correlations with CaCO ₃ % in soil	54
4.2.2.2. Correlations with EC of soil paste and soil pH	55
4.2.2.3. Correlations with soil organic matter	55
4.2.2.4.Correlations with the components of soil texture	57

4.2.3 Assessment the most effective soil parameters on	
different methods of extraction available -K by	59
using stepwise regression analysis	0,
4.2.4: Correlations between K (%) of barley plants and	60
K – extracted with different methods	
4.3. Evaluation of Fe- extractability	64
4.3.1.Assessment of different methods used for	64
extracting Iron	
4.3.2.Correlations between soil available Iron extracted	
by different methods and some soil	67
characteristics	
4.3.2.1. Correlations with CaCO ₃ % in soil	67
4.3.2.2. Correlations with EC of soil paste and soil pH	68
4.3.2.3. Correlations with soil organic matter	69
4.3.2.4. Correlations with the components of soil	70
texture	
4.3.3. Assessment the most effective soil parameters on	
different methods of extraction available Fe by	71
using stepwise regression analysis	
4.3.4:The Correlations between Fe –concentration	
(ppm) of barley plants and Fe-extracted with	73
different methods	10
4.4. Evaluation of Mn – extractability	76
4.4.1.Assessment of different methods used for	76
extracting Manganese	
4.4.2.Correlations between soil available Manganese	
extracted by different methods and some soil	79
characteristics	
4.4.2.1. Correlations with CaCO ₃ % in soil	79
4.4.2.2. Correlations with EC of soil paste and soil pH	80
4.4.2.3. Correlations with soil organic matter	81
4.4.2.4. Correlations with the components of soil	82

iexiure	
4.4.3. Assessment the most effective soil parameters on	
different methods of extraction available Mn by	83
using stepwise regression analysis	
4.4.4: Correlations between Mn-concentration (ppm)	
in barley plants and Mn-extracted with different	85
methods	
4.5. Evaluation of Zn – extractability	88
4.5.1.Assessment of different methods were used for	88
extracting Zinc	
4.5.2.Correlations between soil available Zinc	91
extracted by different methods and some soil	
characteristics	
4.5.2.1. Correlations with CaCO ₃ % in soil	91
4.5.2.2. Correlations with EC of soil paste and soil pH	92
4.5.2.2. Correlations with soil organic motter	93
4.3.2.3. Correlations with soil organic matter	<i>))</i>
4.5.2.4. Correlations with the components of soil	93
texture	
4.5.3 Assessment the most effective soil parameters on	94
different methods of extraction available Zn by	
using stepwise regression analysis	
4.5.4: Correlations between Zn-concentration (ppm) in	95
barley plants and Zn-extracted with different	
methods	
5- SUMMARY	98
6- REFERENCES	103
* ARABIC SUMMARY	