Title	PagePage
1-INTRODUCTION	1
2-REVIEW OF LITERATURE	4
1. Morphology, Biology and importance of Sesame	4
1.1. Taxonomy of sesame	
1.2. Ecology and Distribution	
2. Drought stress	7
2.1. Drought escape strategies	
2.2. Drought avoidance strategies	
2.3. Drought tolerance strategies	
3. Crop responses to water stress	9
4. Morphological responses to water stress	10
4.1. Plant growth and development	
4.2. Yield and yield component	
5. Physiological responses to water stress	13
5. 1. Compatible solutes (Proline accumulation)	
5. 2. Chlorophyll content	
5. 3. Relative water content	
5. 4. Water Use Efficiency (WUE)	
5. 5. Normalized difference vegetation index (NDVI)	
5. 6. Osmolyte Accumulation and Osmotic Adjustment	
6. Biochemical markers (Antioxidative Defense Mechanism)	20
7. Molecular markers in sesame using Random Amplified polymorphic DNA (RAPD).	22
8. Remote sensing and its application for detecting water stress	23
8.1. Crop phenotyping and breeding	
8.2. The role of thermal imaging as a selection criterion for drought tolerance	
9. Selection and Genetic parameters for sesame under Water Stress	s. 26
3. MATERIALS AND METHODS	30
1. Genetic materialsand selection procedure	30
2. Layout and water deficit treatments	30
3. Measurements traits	33
3.1. Morphological and reproductive traits	
3.2. Physiological traits	
3.3. Biochemical traits	
4. Random amplified polymorphic DNA (RAPD) analysis	35

CONTENTS

5. Remote sensing traits	38
5.1. The Normalized Difference Vegetation Index (NDVI) determination.	
5.2. Thermal image acquisition	
5.3. Thermal Indices and Stomatal Conductance	
6. Statistical analysis	39
6.1. Estimation of Genetic parameters	
6.1.1. Heritability in narrow sense	
6.1.2. Response to selection	
4. RESULTS AND DISCUSSIONS	41
1. Effect of water stress on Growth and development traits	41
2. Effect of water stress on Yield and seed oil %	46
3. Effect of water stress on physiological traits	49
3.1. SPAD values	
3.2. Normalized Difference Vegetation Index (NDVI)	
3.3. Relative water content (RWC)	
3.4. Proline content (PC)	
3.5. Leaf Osmotic potential (LOP)	
3.6. Water use efficiency (WUE)	
4. Effect of water stress on biochemical traits	57
4.1. Effect of water stress on peroxidase (POX)	
and catalase (CAT) enzymes	
5.Advanced Selection for water deficit among sesame segregating	60
6. Genetic behavior of plant characteristics under water stress	74
6.1.Growth and Yield traits	74
6.1.1. Estimates of heritability	
6.1.2. Estimates of genetic advance from selection	
6.2. Physiological characters	76
7. RAPD analysis	78
8. Effect of water stress on spectral signature	82
8.1. Effect of water stress on thermal canopy temperature 82	
8.2. Effect of water stress on stomatal conductance (I_G) 90	
and crop water stress index (CWSI)	
9. Correlation among traits	95
5- Conclusion	98
6- Summary	99
7- References 8- Arabic summary	102

LIST OF TABLES

Table No	Title	Page
1	The name and pedigree of the sesame genotypes.	31
2	The amount of water in each interval for each Water deficit treatments.	32
3	Primer names and sequences for characterizing genomes.	36
4	TBE buffer (5 X), pH 8.0.	37
5	The degree of freedom and expected mean squares	39
6	Mean squares of morphological and reproductive traits in sesame populations for combined analysis	41
7	Mean squares of physiological traits in sesame populations for combined analysis	42
8	Performance of sesame populations under 100% ET_0 moisture level.	43
9	Performance of sesame populations under 80% ET _o moisture level.	43
10	Performance of sesame populations under 60% ET_0 moisture level.	44
11	Performance of yield and its attributes traits in sesame populations under 100% ET_0 moisture level.	47
12	Performance of yield and its attributes traits in sesame populations under 80% $\rm ET_{O}$ moisture level.	47
13	Performance of yield and its attributes traits in sesame populations under 60% ${\rm ET}_{\rm O}$ moisture level.	48
14	Mean performance of SPAD values, normalized difference vegetative index (NDVI) for sesame populations under various moisture levels.	50
15	Mean performance of relative water content (RWC) and proline content for sesame populations under various moisture levels.	52
16	Advanced selection for Plant height trait in $F_{3:4}$ families under 100% and 60% ET_0 moisture level.	63
17	Advanced selection for Fruiting zone length trait in $F_{3:4}$ families under 100% and 60% ET_0 moisture level.	64

18	Advanced selection for Number of capsules /plant trait in F _{3:4} families	68
	under 100% and 60% ETomoisture level.	
19	Advanced selection for Seed yield Plant ⁻¹ trait in $F_{3:4}$ families under 100% and 60% ET _o moisture level.	69
20	Advanced selection for 1000-seed weight trait in $F_{3:4}$ families under 100% and 60% ET _o moisture level.	70
21	Advanced selection for Seed oil percentage trait in $F_{3:4}$ families under 100% and 60% ET_0 moisture level.	71
22	Advanced selection for SPAD trait in $F_{3:4}$ families under 100% and 60% ET_0 moisture level.	72
23	Advanced selection for NDVI trait in $F_{3:4}$ families under 100% and 60% ET_0 moisture level.	73
24	Estimation of phenotypic (PCV) and genotypic (GCV) coefficients of variation, narrow sense heritability (h ²) and genetic advance (GA) (%) for various agronomic traits in sesame.	75
25	Phenotypic and genotypic coefficient of variability (PVC and GCV), heritability (h ²) and genetic advance (GA) for physiological characters in sesame genotypes.	77
26	Number of specific bands among sesame genotypes.	79
27	Proximity Matrix among sesame genotypes.	80
28	Average temperatures (°C) and stress indices for sesame genotypes under water deficit.	93
29	Simple correlation between seed yield and morphophysiological characters for sesame populations under different water stress treatments.	97

LIST OF FIGURES

Fig.	Title	Page
1	Effect of water stress on leaf osmotic potential (-bar) for sesame	54
2	Effect of water stress on leaf osmotic potential (-bar) for sesame populations and mid parents in (2015).	54
3	Effect of water stress on water use efficiency (WUE) for sesame populations and midparents for (2014).	56
4	Effect of water stress on water use efficiency (WUE) for sesame populations and mid parents for (2015).	56
5	Effect of water stress on peroxidase activity for sesame populations and mid parents for (2014).	58
6	Effect of water stress on peroxidase activity for sesame populations and mid parents for (2015).	58
7	Effect of water stress on catalase activity for sesame populations and mid parents for (2014).	59
8	Effect of water stress on catalase activity for sesame populations and mid parentsfor (2015).	59
9	RAPD pattern of sesame genotypes using primers OPO6, OPA7, OPM5, OPE6 and OPG2 DNA fragments.	81
10	Dendrogram for Ten sesam genotypes constructed from RAPD data based on Average Linkage (Between Groups), using Similarity computed according to Nei and Li coefficient.	82
11	Infrared thermal image (left) and visual (right) for sesame populations under 100% ET_0	85
12	Infrared thermal image (left) and visual (right) for sesame populations under 60 % ET_0	86
13	Variation in thermal temperature due to water deficit among population (1) selections.	87
14	Variation in thermal temperature due to water deficit among population (2) selections.	87
15	Variation in thermal temperature due to water deficit among population (3) selections.	88
16	Variation in thermal temperature due to water deficit among population (4) selections.	88
17	Infrared thermal images for the detached sesame leaflets due to stress and control treatments among the population (4) (stress is right and control is left).	89
18	Infrared thermal images in the black wooden boxfor some best selection under severe water stress.	90
19	Infrared thermal images in the black wooden boxfor some best selections under severe water stress.	91
20	Infrared thermal images in the black wooden boxfor some best selections under severe water stress.	92
21	Effect of water stress on stomatal conductance for sesame populations and selections.	94
22	Effect of water stress on crop water stress index for sesame populations and selections.	95

ABBREVIATION

50% fl.	50 % flowering
<u>C1,C2</u>	Cycle 1 and 2 of selction
CAT	Catalase
Chl	chlorophyll
CWSI	crop water stress index
EC	electric conductivity
ЕТо	Evapotranspiration
G.C.V	genotypic coefficients of variability
GA %	genetic advance from selection
h ²	heritability in narrow sense
I _G	stomatal conductance
L of fr.	Length of fruiting zone
LOP	Leaf osmotic potential
NC	number of capsules
NDVI	Normalized Difference VegetationIndex
°C	degree of temperature
PC	proline content
PCV	phynotypic coefficients of variability
РН	plant height
Pop.	Population
POX	Peroxidase
\mathbf{R}^2	Coefficients of determination
RAPD	Random Amplified Polymorphic DNA
RWC	Relative water content
S	selection difference
SPAD	chlorophyll index
T _{wet}	leafwet temperature
T _{leaf}	canopy leaves temperature
W.U.E	Water use efficiency

Name	EmanTalaatAbdou	
Title	Selection for yield under water stress condition in	
	Sesame	
Faculty	Agriculture, Suez Canal University	
Department	Agronomy	
The place	Ismailia	
Degree	Doctor of Philosophy	
Data	12 / 12 /2016	
Language	English	
	Prof. Dr. Tarek Youssef Bayoumi	
Supervised by	Prof. Dr. Samar. A. M. Elshakhess Dr. Soad A. M. Mohamed	

<u>Abstract</u>

Three experiments were conducted during the three constitutive seasons (2013) , 2014 and 2015) for sesame populations which resulting from F2 in agriculture experimental station. The four populations were derived from crossing among the six parents i.e., population 1 (for Shandaweel 3* Line N.A 673* Line N.A 357-11-1), population 2 (Line N.A b14* Line N.A 289* Line N.A 560), population 3 (Shandaweel3 * Line N.A 560 *Line N.A b14) and population 4 (Line N.A 560* Line N.A 289* Line N.A 357-11-1) which were grown in 2013 season. Seeds of F_2 plants were planted in separate rows. Visually, 1200 F_2 plants were selected according to phenotype; giving preference to drought tolerance. Each plant was harvested separately and planted in a separate row in the F_3 generation under three water regimes, 300 plants for each water regime in 2014. Selection of plants from the planting in the F_3 generation was done in the same way. According to some yield components, 25 F₄ families' plants were selected from each combination and planted under the three water regimes in 2015. At harvest, the best 10 lines per combination were selected based on drought tolerance traits. The results can be summarized as follow: The results implied that there were considerable genetic variations among evaluated populations. The results clearly indicated that any change in the amount of irrigation water less than optimum condition reduces the 1000-seed weight and yield. The population No.4 which had high RWC, WUE, proline and enzymes activity under stress conditions and may be considered more drought tolerance. The results inveterate the effectiveness of the RAPD markers for the detection of polymorphism among sesame genotypes based on estimation of similarity coefficients for the identification of genotypes and hybrids by distinctive fingerprints. Thermal images were more effective for selecting sesame genotypes for drought.

Key words

SesamumindicumL.,drought, NDVI, Infra red thermal images, Enzymes, RAPD, RWC, WUE, proline and RAPD markers