Table Of Contents

Topics	Page
List of Abbreviations	I
Table of Contents	III
List of Tables	IV
List of Figures	V
List of Graphs	VIII
List of Photos	IX
Introduction	1
Review of Literatures	4
Material and Methods	23
Results	42
Discussion	96
Summary and Conclusion	107
References	113
Arabic Summary	

Lists Of Tables

Table No.	Table title				
Ι	Location of p53 gene on chromosome	13			
II	The food ingredients for each 100 kilograms of rat diet				
III	The diet formulation according to NRC.	23			
1	Effect of captopril administration on the concentrations of reduced glutathione in whole blood in experimental groups of rats (mg/dl).				
2	Effect of captopril administration on serum glutathione peroxidase activity in experimental groups of rats (mu/ml).	44			
3	Effect of captopril administration on serum catalase activity in experimental groups of rats (U/L).	46			
4	Effect of captopril administration on serum superoxide Dismutase activity in experimental groups of rats (U/ml).	48			
5	Effect of captopril administration on serum malondialdehyde (MDA) concentration in experimental groups of rats (nmol/L).				
6	Effect of captopril administration on kidney malondialdehyde (MDA) concentration in experimental groups of rats (nmol/gram tissue).				
7	Effect of captopril administration on serum creatinine concentration in experimental groups of rats (mol/L).				
8	Effect of captopril administration on serum blood urea nitrogen concentration in experimental groups of rats (mg/dl).	56			
9	Effect of captopril administration on serum renin concentration in experimental groups of rats (pg/mL).	58			
10	Effect of captopril administration on serum angiotensin II concentration in experimental groups of rats (ng/ml).	60			
11	Effect of captopril administration on serum aldosterone concentration in experimental groups of rats (pg/mL).				
12	Effect of captopril administration on the concentration of total p53 in whole blood of rats.	64			
13	Effect of captopril administration on the relative density of kidneys concentration of p53 in kidneys mRNA of rats	66			

Lists Of Figures

Diagram No.	Figure Title	Page			
Ι	Chemical Structure of cisplatin	6			
II	The pathophysiological events in cisplatin nephrotoxicity				
III	Major pathways in cisplatin-induced acute tubular cell injury.	9			
IV	Schematic representation of the p53 structure.	14			
V	Regulation of p53.	15			
VI	The Involvement of p53 in Cisplatin Nephrotoxicity	17			
VII	Chemical Structure of captopril.	20			
VIII	Standard curve of malondialdhyde.	30			
IX	Standard curve of renin.	33			
X	Standard curve of angiotensin II.	35			
XI	Standard curve of aldosterone.	36			
1	Semi-quantitative RT-PCR of blood tumor protein p53 against β actin as housekeeping gene.				
2	Semi-quantitative RT-PCR of kidney tumor protein p53 against kidney β actin as housekeeping gene.				
3	Correlation between serum aldosterone, angiotensin and renin.				
4	Correlation between serum aldosterone, blood urea nitrogen and creatinine.				
5	Correlation between serum aldosterone, serum and kidney malondialdhyde.	72			
6	Correlation between serum aldosterone, and blood reduced glutathione and serum glutathione perioxidase.	72			
7	Correlation between serum aldosterone, serum superoxide dismutase and catalase.	73			
8	Correlation between serum angiotensin, serum renin.	73			
9	Correlation between serum creatinine and blood urea nitrogen.				
10	Correlation between serum angiotensin, serum creatinine and blood urea nitrogen.	74			
11	Correlation between serum angiotensin ,serum and kidney malondialdhyde.	75			

Diagram No.	Figure Title	Page				
12	Correlation between serum angiotensin, blood reduced glutathione and serum glutathione perioxidase.	75				
13	Correlation between serum angiotensin, serum superoxidedismutase and catalase.					
14	Correlation between serum renin, serum creatinine and blood urea nitrogen.	76				
15	Correlation between serum renin, serum and kidney malondialdhyde.	77				
16	Correlation between serum renin, blood reduced glutathione and serum glutathione perioxidase.	77				
17	Correlation between serum renin, serum superoxide dismutase and catalase.	78				
18	Correlation between serum blood urea nitrogen, serum and kidney malondialdhyde.	78				
19	Correlation between serum blood urea nitrogen, blood reduced glutathione and serum glutathione perioxidase.	79				
20	Correlation between serum blood urea nitrogen, serum superoxidedismutase and catalase.					
21	Correlation between serum creatinine, serum and kidney malondialdhyde.					
22	Correlation between serum creatinine, blood reduced glutathione and serum glutathione perioxidase.	80				
23	Correlation between serum creatinine, serum superoxidedismutase and catalase.	81				
24	Correlation between serum malondialdhyde and kidney malondialdhyde.	81				
25	Correlation between blood reduced glutathione and serum catalase.	82				
26	Correlation between serum malondialdhyde, blood reduced glutathione and serum glutathione perioxidase.	82				
27	Correlation between serum malondialdhyde, serum superoxide dismutase and catalase.	83				
28	Correlation between kidney malondialdhyde , blood reduced glutathione and serum glutathione perioxidase.	83				
29	Correlation between kidney malondialdhyde, serum superoxide dismutase and catalase.	84				
30	Correlation between blood reduced glutathione, serum glutathione perioxidase and superoxide dismutase.	84				
31	Correlation between serum glutathione perioxidase,	85				

Diagram No.	Figure Title					
	serum superoxide dismutase and catalase.					
32	Correlation between serum superoxide dismutase and serum catalase.	85				
33	Correlation between kidney tumor protein p53 and serum renin.	86				
34	Correlation between blood tumor protein p53, serum aldosterone and angiotensin.	86				
35	Correlation between blood tumor protein p53, serum renin and kidney tumor protein p53.	87				
36	Correlation between blood tumor protein p53, serum creatinine and blood urea nitrogen.	87				
37	Correlation between blood tumor protein p53, serum and kidney malondialdhyde	88				
38	Correlation between blood tumor protein p53 ,blood reduced glutathione and serum glutathione perioxidase	88				
39	Correlation between blood tumor protein p53, serum superoxide dismutase and catalase.	89				
40	Correlation between kidney tumor protein p53, serum aldosterone and angiotensin.	89				
41	Correlation between kidney tumor protein p53, serum blood urea nitrogen and creatinine.	90				
42	Correlation between kidney tumor protein p53, serum and kidney malondialdhyde.	90				
43	Correlation between kidney tumor protein p53, blood reduced glutathione and serum glutathione perioxidase.	91				
44	Correlation between kidney tumor protein p53, serum superoxide edismutase and catalase.	91				

Lists Of Graphs

Graph No.	Graph title				
1	Effect of captopril administration on the concentrations of reduced Glutathione in whole blood in experimental groups of rats (mg/dl).	43			
2	Effect of captopril administration on serum glutathione peroxidase activity in experimental groups of rats (mu/ml).	45			
3	Effect of captopril administration on serum CAT activity in experimental groups of rats (U/L).	47			
4	Effect of captopril administration on serum Superoxide Dismutase activity in experimental groups of rats (U/ml).	49			
5	Effect of captopril administration on serum malondialdehyde (MDA) concentration in experimental groups of rats (nmol/L).	51			
6	Effect of captopril administration on kidney malondialdehyde (MDA) concentration in experimental groups of rats (nmol/gram tissue).	53			
7	Effect of captopril administration on serum creatinine concentration in experimental groups of rats mol/L.				
8	Effect of captopril administration on serum blood urea nitrogen concentration in experimental groups of rats (mg/dl).	57			
9	Effect of captopril administration on serum renin concentration in experimental groups of rats (pg/mL).	59			
10	Effect of captopril administration on serum angiotensin II concentration in experimental groups of rats (ng/mL).	61			
11	Effect of captopril administration on serum aldosterone concentration in experimental groups of rats (pg/mL).	63			
12	Effect of captopril administration on the concentration of total tumor protein p53 in whole blood of rats.	65			
13	Effect of captopril administration on the concentration of total tumor protein p53 in kidneys of rats.	67			

List Of Photos

Photo No	Photo title	Page
1	Showing renal mucosa of rats of group I	92
2	Showing renal mucosa of rats of group II	93
3	Showing renal mucosa of rats of group III	94
4	Showing renal mucosa of rats of group IV	95

LIST of ABBREEVIATIONS

ANOVA	•	Analysis of variance
ACEI	:	Angiotensin converting enzyme inhibitors
AT1	:	Angiotensin receptor one
BUN	•	Blood Urea Nitrogen
B.wt.	•	Body weight
BPF	:	bradykinin potentiating factor
CAT	:	Catalase
COX	:	Cyclooxygenase
Cu	:	Copper
DNA	:	Deoxyribonucleic acid
DT/ha	•	Dection per hectare
EDTA	:	Ethylene Diamine Tetra Acetic Acid
EGF	:	Epidermal growth factor
ELIZA	:	Enzyme-linked immunosorbent assay
GPx	:	Glutathione peroxidase
GSH	:	Reduced Glutathione
GFR	:	Glomerular Filtration Rate
H&E	:	Hematoxyline and Eosine
KU/L	:	Kilounits/liter
L.S.D	:	Least significance difference
MDA	:	Malondialdehyde
mol/L	•	Mol per liter
mu/ml	:	Milliunits/ milliliter
Μμ	:	Micromole
nm	:	Nanometer
ng/ml	•	Nanograms per millilitre.
nmoL/gram	•	Nanomol per grams
NO	:	Nitric oxide
NRC	:	National Research Council
NSAIDS	:	Non steroidal anti-inflammatory drugs
pg/ml	:	Picograms per millilitre.
Pbs	:	Phosphate buffer saline
Pt	:	Photoelectrocatalytic oxidation
P _X	:	Peroxidase
r.p.m	•	Revolution per minute

Rt-PCR	•	Reverse transcriptase-Polymerase chain Reaction
RNA	:	Ribo Nucleic Acid
ROS	:	Reactive oxygen species
SOD	:	Superoxide Dismutase
UL	:	Microlitre
VEGF	:	Vascular endothelial growth factor
μL	:	Microliter
µmol/L	:	Micromol per liter

الإدارة العامة للمكتبات

College	Veterinary Medicine	Department	Biochemistry and	Call no.	
0	-	Department	Chemistry of Nutrition		
Author	Shaimaa Ahmed Ibrahim Moustafa Safan	Degree	Doctor Philosophy	Date	2017
Title	Protective Effect of Some		ors in Acute Nephro Toxicity I	nduced by	Some
			genic Drugs in Rats		
		Dissertation	Abstract		
			have a protective effect against	-	
-	•	-	topril in treatment of renovascula	• 1	
-		•	ed to its free radicals scavenging	-	
			decrease the undesirable change		-
-)g to 250g were used in this st	•	
			cisplatin intraperitoneally in no ion from 54.85 ± 0.82 mg/dl to		
			ion from 54.85 ± 0.82 mg/dl to g b. wt of captopril intraperitone		
			concentration to 66.01 ± 0.99 r		
	-		lministration of 60 mg/kg b.		
			se in whole blood GSH conc		
			as a positive correlation between		
			dialdhyde, kidney malondialdh	•	
			r hand, there is appositive correla		
			In addition to that there was a r		
			protein p53 and GPx, SOD, re		
			negative correlation between s ialdhyde, kidney malondialdhyd		
	.		n normal rats, administration of		
	e		nine ,serum blood urea nitrogen,	U .	0
-	-		ey tissues in normal rats Also	-	
-			tumor protein p53 and kidney b		
p53 in n	ormal rats. On the other hand,	administration	n of cisplatin caused a signification	nt reduction	n in the
			perioxidase, serum catalase a		
			nificant decrease in serum creat		
	-		in serum creatinine, serum bloo		-
cisplatin-treated rats while captopril administration caused highly significant decrease in serum					
angiotensin II, serum aldosterone in normal rats and in cisplatin-treated rats. On the other hand,					
administration of captopril caused a significant increase in the whole blood GSH concentration, Serum					
Glutathione perioxidase, serum catalase and serum renin in normal rats and in cisplatin treated rats. Also, captopril treatment caused a significant reduction in serum MDA, MDA in kidney tissues in normal rats					
and in cisplatin treated rats. It could be concluded that Administration of captopril reverse the un desirable					
	effect of cisplatin respecially in remedy of acute nephrotoxicity in rats through decrease the level of				
angiotensin II, aldosterone and the p53 gene expression.					
Key Wo	ords (not more than 10)				

Acute Nephro Toxicity - cisplatin - captopril - renin - angiotensin II , aldosterone -p53

الإدارة العامة للمكتبات- جامعة المنصورة- ٦٠ شارع الجمهورية - المنصورة - ج.م.ع. - ص.ب: ٣٥٥١٦