Name of Candidate: Mohamed Hamada Ahmed Mahgoub Degree: Doctor of Philosophy Title of Thesis: Studies on Certain Predatory Mites Attacking Arthropod Pests Infesting Cucumber in Plastic Houses. Supervisions: Prof. Dr. Morad Fahmy Hassan Prof. Dr. Fatma Samir Ali Prof. Dr. Abdel-Khalek Mohamed Hussein Department: Zoology and Agriculture Nematology Branch: Acarology Approval: / / 2006

ABSTRACT

Cucumber plants infested with many arthropod pests which include mites such as two-spotted spider mite or insects like thrips, aphids and white fly.

Population dynamics of all pests on two cucumber cultivars (Sahm and Heikal) in plastic houses through two years (2004-2005) in Beheira Governorate were studied. The biological aspects of four predatory mites were tested on different stages of *Tetranychus urticae*, adults, immatures and eggs, the shortest life cycle averaged 3.90 days on adult stages for *Phytoseiulus macropilis*; 4.80 days on immatures for *Neusulus californicus*; 5.9

days on immatures of *N. zaheri* and 4.4 days on eggs of *N. cucumeris*.

Biological control for *T. urticae* on cucumber plants with the same prior predatory were made during two seasons 2004-2005, both *N. californicus* and *P. macropilis* giving the best reduction rate. The same predators used for controlling three insect pests: *Thrips tabaci, Aphids gossypii* and *Bemesia tabaci,* through the same season, *N. cucumeris* and *N. zaheri* giving the highest reduction rate. Two components were tested for controlling the all former pests during the same seasons; vertemic and ortus. Vertemic was the best one in reducing the all pests population. Integrated pest control were studied by using the best two predatory mites and the best bio-cide.

The population dynamics for the four phytoseiid mites were studied. The highly number of all predators observed on Heikal cultivar than Sahm one through the same two seasons.

Key words: Phytoseiulus macropilis, Neusielus californicus, N. cucumeris, N. zaheri, Tetranychus urticae, Bemesia tabaci, Aphids gossypii, Thripis tabaci, Biological control.

Prof. Dr. Morad Fahmy Hassan

CONTENTS

INTRODUCTION	1
REVIEW OF LITERATURE	4
MATERIALS AND METHODS	.62
1- Ecological Studies	62
1.1- Population dynamics of phytophagous mites	
and plant sucking insects associated with	
cucumber plants sucking in plastic	
houses:	62
2- Control Studies	64
2.1- Biological control	
experiments	64
2.1.1- Collection and mass rearing of <i>T. urticae</i> a	and
plant sucking insects as prey	64
2.1.2- Collection and mass rearing of four predate	ory
phytoseiid mites	65
2.1.3- Biological	
experiments	65
2.1.4- Release of four predatory phytoseiid	
mites	66
2.2- Chemical control	
experiments	67
3- Integrated Control	
Experiments	70
RESULTS AND DISCUSSION	77
1- Population Dynamics of Phytophagous Mites and	
Plant Sucking Insects Inhabiting Two Cucumber	
Cultivars	77
1.1-Population dynamics of the two spotted spider	-
mite 1. urticae during 2004	
season	[[

1.2- Population dynamics of three plant suck insects during 2004season	ing
1.3- Population dynamics of the two spotted	80 spider
mite <i>T. urticae</i> during 2005	
1.4- Population dynamics of three plant suck	ing
insects during 2005season	. 83
2- Biological Studies:	90
2.1- Duration of <i>P. macropilis</i> developmental fed on <i>T. urticae</i> different stages at 30°C	stages
	90
2.2- Duration of <i>N. californicus</i> developmenta	al
stages fed	on 04
2.3- Duration of <i>N. zaheri</i> developmental sta	ages
30°C	97
2.4- Duration of <i>N. cucumeris</i> developmenta	1
stages fed on <i>T. urticae</i> different stages a plant sucking insect species at 30°C	and two
	100
2.5- Feeding capacity	104
2.5.1- Food consumption of <i>P. macropili</i>	s on <i>T</i> .
30°C	104 span at
2.5.2- Food consumption of <i>N. californicu</i>	is on <i>T</i> .
<i>urticae</i> different stages during its life 30°C	span at 107
2.5.3- Food consumption of <i>N. zaher</i> urticae different stages during its life 30°C	<i>i</i> on <i>T.</i> span at 110

2.5.4- Food consumption of N. cucumeris or	η <i>Τ.</i>
urticae different stages and two pl	ant
sucking insect species nymphs during its	life
span at 30°	С
	110
3- Control Studies	115
3 1- Biological control	115
3.1.1- Biological control of T urticae on t	two
cucumber cultivars on plastic houses	at
Nubaria Beheiu	'a
Governorate	115
3 1 1 1- Season 2004	115
3 1 1 2- Season 2005	121
3 1 2- Biological control of three plant suck	ina
insect species on two cucum	ber
cultivars on plastic houses at Nuba	ria
Beheira Governorate	128
3 1 2 1- Season 2004	128
3 1 2 2- Season 2005	133
3.2- Chemical control	
3.2.1- Effect of the tested compounds on <i>T. ur</i>	tiae
different stages	
3.2.1.1- Season 2004	
3.2.1.2- Season 2005	
3.2.2- Effect of the tested compounds on th	ree
plant sucking insec	ts
	150
3.2.2.1- Season 2004	150
3.2.2.2 Season 2005	156
3.3- Integrated control	161
4- Population Dynamics of Phytoseiid Predatory	
Mites	168
4-1-After releasing four predatory	
mites	168
4-1-1 Season 2004	168

	4-1-2- Season 2005 4.2- After integration	168 180
SUMM	ARY	181
REFEF	RENCES	193
ARABI	C SUMMARY	

Name of Candidate: Mohamed Hamada Ahmed Mahgoub Degree: Doctor of Philosophy Title of Thesis: Studies on Certain Predatory Mites Attacking Arthropod Pests Infesting Cucumber in Plastic Houses. Supervisions: Prof. Dr. Morad Fahmy Hassan Prof. Dr. Fatma Samir Ali Prof. Dr. Abdel-Khalek Mohamed Hussein Department: Zoology and Agriculture Nematology Branch: Acarology Approval: / / 2006

ABSTRACT

Cucumber plants infested with many arthropod pests which include mites such as two-spotted spider mite or insects like thrips, aphids and white fly.

Population dynamics of all pests on two cucumber cultivars (Sahm and Heikal) in plastic houses through two years (2004-2005) in Beheira Governorate were studied. The biological aspects of four predatory mites were tested on different stages of *Tetranychus urticae*, adults, immatures and eggs, the shortest life cycle averaged 3.90 days on adult stages for *Phytoseiulus macropilis*; 4.80 days on immatures for *Neusulus californicus*; 5.9

days on immatures of *N. zaheri* and 4.4 days on eggs of *N. cucumeris*.

Biological control for *T. urticae* on cucumber plants with the same prior predatory were made during two seasons 2004-2005, both *N. californicus* and *P. macropilis* giving the best reduction rate. The same predators used for controlling three insect pests: *Thrips tabaci, Aphids gossypii* and *Bemesia tabaci,* through the same season, *N. cucumeris* and *N. zaheri* giving the highest reduction rate. Two components were tested for controlling the all former pests during the same seasons; vertemic and ortus. Vertemic was the best one in reducing the all pests population. Integrated pest control were studied by using the best two predatory mites and the best bio-cide.

The population dynamics for the four phytoseiid mites were studied. The highly number of all predators observed on Heikal cultivar than Sahm one through the same two seasons.

Key words: Phytoseiulus macropilis, Neusielus californicus, N. cucumeris, N. zaheri, Tetranychus urticae, Bemesia tabaci, Aphids gossypii, Thripis tabaci, Biological control.

Prof. Dr. Morad Fahmy Hassan

الخلاصة

يصاب الخيار بالعديد من الأفات من مفصليات الأرجل أكاروسية مثل العنكبوت الأحمر ذو البقعتين وحشرية مثل التربس والمن والذبابة البيضاء.

تم دراسة ديناميكية التعداد على صنفين من الخيار سهم وهيكل المنزرع فى الصوب البلاستيكية فى محافظة البحيرة وتم عمل دراسة بيولوجية لأربع مفترسات أكاروسية على الأطوار المختلفة للعنكبوت الأحمر ذو البقعتين. وكان أقصر دورة حياة للمفترس 4.80 Phytoseiulus macropilis يوماً بتغذيته على الأطوار الغير كاملة للعنكبوت الأحمر، وكانت أقصر دورة حياة للمفترس على الأطوار الغير كاملة للعنكبوت الأحمر، وكانت أقصر دورة حياة للمفترس وبالنسبة للمفترس 5.9 Neusuluis californicus و وبالنسبة للمفترس الغير كاملة . العنكبوت الأحمر . أما المفترس 8.4 يوماً بتغذيته على الأطوار الغير كاملة . العنكبوت الأحمر . أما المفترس 8.4 يوماً بتغذيته على من الموار الغير دورة حياة العنكبوت الأحمر . أما المفترس 8.4 يوماً بتغذيته على المنتر الغير دورة حياة . وبالنسبة للمفترس العنكبوت الأحمر . و من الحياة 1.4 يوماً بتغذيته على بيض

مكافحة الأطوار المختلفة للعنكبوت الأحمر التي تصيب الخيار باستخدام نفس الأربع مفترسات الأكاروسية خلال سنتين متتاليتين 2004، 2005. وقد حقق المفترسين N. californicus و M. محافظة القات المشرية التي تصيب الخيار واستخدام نفس المفترسات الأربعة في مكافحة الآفات المشرية التي تصيب الخيار خلال الفترة وقد حققا المفترسين N. cucumeris و N. zaheri أعلى نسبة خفض لهذه الآفات .

تم استخدام نوعين من المركبات على الآفات السابق ذكر ها خلال نفس الفترة هما vertemic و ortus وأن المبيد الحيوى أعطى أعلى نسبة خفض للأطوار المختلفة للعنكبوت الأحمر والآفات الحشرية الثلاثة .

تم عمل المكافحة المتكاملة باستخدام أفضل نوعين من المفترسات وأفضل مبيد وذلك لتقليل تعداد الأفات الأكاروسية والحشرية .

أيضا تم در اسة ديناميكية التعداد بالنسبة للمفترسات الأكاروسية وأتضح أن أعلى نسبة لتعداد المفترسات الأربعة على الصنف هيكل من الصنف سهم خلال الموسمين .

الكلمات الدالة :

Phytoseiulus macropilis, Neusielus californicus, N. cucumeris, N. zaheri, Tetranychus urticae, Bemesia tabaci, Aphids gossypii, Thripis tabaci,

والمكافحة البيولوجية .

ا<u>د.</u> مراد فهمی حسن

LIST OF TABLES

Table page

- (1): Trade name, common name, formulation and rate of application of the tested chemicals.......68

- (6): Duration of developmental stages of the predatory mite *P. macropilis* fed on *T. urticae* different stages at 30°C......91
- (7): Duration of developmental stages of the predatory mite *N. californicus* fed on *T. urticae* different stages at 30°C......95

- (10): Food consumption of *P. macropilis* on *T. urticae* different stages during its life span at 30°C.......105
- (11): Food consumption of *N. californicus* on *T. urticae* different stages during its life span at 30°C...... 108
- (12): Food consumption of *N. zaheri* on *T. urticae* different stages during its life span at 30°C......111
- (13): Food consumption of *N. cucumeris* on *T. urticae* different stages and two plant sucking insect species nymphs during its life span at 30°C. 113

- (16): Average numbers of *T. urticae* different stages / leaf on two cucumber cultivars affected by

- (34): Weekly mean numbers of four predatory mites /leaf after their release on two cucumber cultivars

LIST OF FIGURES

Fig.

Page

(1): Steps of plastic houses prepare71
(2): Separating the plastic house into sections72
(3): Mass rearing of the predatory mites73
(4): Preparing steps of the predator before releasing74
(5): Preparing of releasing process75
(6): Predator release on plants76
(7): Population dynamics of <i>T. urticae</i> different stages
on two cucumber cultivars at Nubaria, Baheira
Governorate, during 2004
(8): Population dynamics of three plant sucking
insects infestation on two cucumber cultivars at
Nubaria, Baheira Governorate during 2004
(9): Population dynamics of <i>T. urticae</i> different stages
on two cucumber cultivars at Nubaria, Baheira
Governorate, during 2005
(10): Population dynamics of three plant sucking
insects infestation on two cucumber cultivars at
Nubaria, Baheira Governorate during 2005
(11): Duration of development stages of <i>P. macropilis</i>
fed on <i>T. urticae</i> different stages at 30 °C
(12): Duration of development stages of <i>N. californicus</i>
fed on <i>T. urticae</i> different stages at 30 °C96
(13): Duration of development stages of <i>N. Zaheri</i> fed
on <i>T. urticae</i> different stages at 30 °C

- (14): Duration of development stages of *N. cucumeris* fed on *T. urticae* different stages and two plant sucking insect species at 30 °C......102
- (15): Food consumption of *P. macropilis* on *T. urticae* different stages during its life span at 30 °C.......106

- (18): Food consumption of *N. cucumeris* on *T. urticae* different stages and two plant sucking insects during its span at 30°C......114

- (28) Average numbers of *T. urticae* different stages /leaf of Heikal cucumber cultivar affected by

spraying two compounds at Nubaria, Beheira Governorate during 2004 season......142

- (35) Average numbers of *T. urticae* different stages /leaf of Sahm cucumber cultivar affected by

releasing two predacious mite species after spraying biocide at Nubaria, Beheira Governorate during 2005 season......163

- (39) Weekly mean numbers of four predatory mites /leaf of Sahm cuc

- (42) Weekly mean numbers of two released predatory mites after spraying vertemic on Heikal cucumber