

Bioremediation of Contaminated Soil with Petroleum Hydrocarbons

A thesis Presented By El-Shaymaa El-Sayed Mussa Mohamed

Assistant Researcher, Soils, Water and Environment Research Institute, Agricultural Research Center B.Sc. in Botany, Faculty of Science, Al-Azhar Univ. (2000) M.Sc. in Botany, Faculty of Science, Al-Azhar Univ. (2005)

Submitted for the award of Degree of Doctor Philosophy (Ph.D) in Microbiology

То

Botany and Microbiology Department Faculty of Science (Girls) Al-Azhar University

SUPERVISED BY

Prof. Dr. Rawheya Abd El-Latif Salah El-Din

Professor in Botany & Microbiology Department, Faculty of Science (Girls), Al-Azhar University.

Prof .Dr Ahmed Ghoneim Rahal

Professor (Emeritus) of Agricultural Microbiology, Agricultural Microbiology Department, Soils, Water & Environment Research Institute Agricultural Research Center, Giza, Egypt.

Prof. Dr.Lobna Abd EL-Aziz Ahmed Moussa

Professor of Agricultural Microbiology, Agricultural Microbiology Department, Soils, Water & Environment Research Institute, Agricultural Research Center, Giza, Egypt.

Dr. Maie Ahmed Younes El-khawaga

Assistant Professor of Microbiology, Botany & Microbiology Department, Faculty of Science (Girls), Al-Azhar University.

2016

LIST OF CONTENTS

Content	Page
CONTENTS	
LIST OF TABLES	VII
LIST OF FIGURES	XI
LIST OF PICTURES	XV
LIST OF ABBREVIATIONS	XV
ABSTRACT	a
I. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Environmental pollution	4
2.2. Petroleum composition	5
2.3. Determination methods of petroleum hydrocarbon	9
2.3.1. Gravimetric method	9
2.3.2. Spectroscopic methods	10
2.3.2.1. Infrared (IR) spectroscopy	10
2.3.2.2. Ultraviolet (UV) spectroscopy	10
2.3.2.3. Visible spectroscopy	11
2.3.3. Chromatographic methods	
2.3.3.1. Column chromatography	12
2.3.3.2. Gas chromatography	12
2.4. Remediation technology	
2.4.1. Physical and Chemical methods	
2.4.2. Bioremediation	17
2.4.2.1. Bioremediation strategies	19
2.4.2.1.1. In situ bioremediation	20
(1) bioventing	
(2) biosparing	
2.4.2.1.2. Ex situ bioremediation	21
(1)Land farming	21
(2)Composting	21
(3) Biopiles	22
(4) Bioreactors	22

2.4.2.2. Bioremediation types	22
2.4.2.2.1.Intrinsic Bioremediation, (natural attenuation)	22
2.4.2.2.Biostimulation	23
2.4.2.2.3.Bioaugmentation	23
2.4.2.3. Factors limiting bioremediation	23
2.5. Hydrocarbons utilizing microorganisms	24
2.5.1 The Role of biosurfactants in petroleum hydrocarbons degradation	29
2.6. Indicator methods for bioremediation process	31
2.6.1. Fluorescein diacetate (FDA) hydrolysis assay	32
2.6.2. Dehydrogenase assay	32
2.6.3. Bacterial Lipase assay	33
2.6.4. 2,6 dichlorophenol indophenols (DCPIP) indicator	35
2.7. Microbial degradation of hydrocarbons in soil	37
2.7.1. Microbial degradation of aliphatic hydrocarbons	39
2.7.2. Microbial degradation of aromatic hydrocarbons	40
2.8. Phytoremediation	42
2.8.1. Phytoremediation mechanisms	43
2.8.1.1. Phytoextraction or phytoaccumulation	43
2.8.1.2. Phytostabilization	44
2.8.1.3. Phytodegradation or rhizodegradation	44
2.8.1.4. Rizofilteration	44
2.8.2. Phytoremediation of petroleum hydrocarbons	47
3. MATERIALS AND METHODS	52
3.1. Materials	52
3.1. 1. Soils used	52
3.1.2. Petroleum oil	52
3.1.3. Used plant	53
3.1.4. Media used	53
3.1.4.1. Nutrient broth medium	53
3.1.4.2. Nutrient agar medium	53

3.1.4.3. King's B medium	53
3.1.4.4. Mineral salts medium (MSM)	53
3.1.4.5. The Bushnell-Hass (BH) medium	54
3.1.4.6. The basal medium for lipase production	54
3.1.4.7. The modified Mckeen medium	54
3.2. Methods	55
3.2.1. Isolation of bacteria	55
3.2.2. Screening of bacterial isolates for petroleum degradation	55
3.2.2.1. Selection of the most potent isolates for petroleum oil degradation	56
3.2.2.1.1. Bacterial count (Log CFU ml^{-1}) method:	56
3.2.3.Experimental Confirmation for the complete determination of the most potent petroleum oil degrading bacterial isolate	
3.2.4. Identification of the most potent petroleum hydrocarbon degrading bacteria	
3.2.4.1 Morphological characterization	58
3.2.4.2. Biochemical characterization by using the Biolog technique	58
3.2.5. Characterization of the most potent petroleum hydrocarbon degraders	59
3.2.5.1. Determination of lipase activity	59
3.2.5.2. Determination of plant growth promoting substances	60
3.2.5.2.1. Separation of plant growth promoting substances	61
3.2.5.2. 2. Indole acetic acid (IAA) determination	61
3.2.5.2.3. Gibberellins (GA) determination	62
3.2.5.3. Biosurfactant production ability	62
3.2.6. Parameters controlling the growth of the most potent degrading bacterial isolates	63
3.2.6.1. Temperature	64
3.2.6.2. PH	64

3.2.6.3. Agitation speed values	65
3.2.6.4. Petroleum oil concentrations	65
3.2.7 Bacterial counts (Log CFU ml ⁻¹)	66
3.2.8. Biodegradation of Petroleum oil by isolates	66
3.2.8.1. Fluorescein diacetate hydrolysis assay (FDA)	66
3.2.9. Preparation of petroleum oil residues for analysis	
3.2.9.1. Liquid - Liquid extraction of petroleum oil residues	67
3.2.9.2. Preparation of the petroleum oil residues for Fractionation	
3.2.9.2.1. Silica gel column preparation	68
3.2.9.3. Fractionation of residual petroleum oil	68
3.2.9.4. Determination of the fractions contents	69
3.2.9.4.1. The gravimetric method	69
3.2.10. Biodegradation and phytoremediation experiment (greenhouse experiment)	69
3.2.10.1. Inoculum preparation	70
3.2.10.2. Experimental design	70
3.2.10.3. Effect of bioremediation and phytoremediation on plant parameters	72
3.2.10.3.1. Growth characteristics	73
3.2.10.3.2. Photosynthetic pigments determination	73
3.2.10.3.3. Proline determination	74
3.2.10.3.4. Peroxidase activity	74
3.2.10.4. Effect of bioremediation and phytoremediation on chemical, physical and biological analysis of soil	
3.2.10.4.1. Fluorescein diacetate hydrolysis assessment (FDA)	75
3.2.10.4. 2. Dehydrogenase activity	76
3.2.10.4. 3. Water-soluble phenols	77

3.2.10.4.4. Measurement of soil pH	77
3.2.10.4. 5. Determination of Soil organic carbon	77
3.2.10.4.6. Determination of total petroleum hydrocarbons calorimetrically	80
3.2.10.4.7. Determination of the fractions contents	81
3.2.10.4.7.1. Extraction of the residual oil contents from soil samples	81
3.2.10.4.7.2. Determination of the aliphatic and aromatic fractions contents by Gas chromatography (GC)	82
3.3. Statistical analysis	82
4. RESULTS AND DISCUSSION	83
4.1. Sample collection from hydrocarbon contaminated site	83
4.2. Screening of petroleum oil degrading bacteria	83
4.3. Experimental confirmation of complete determination of the most potent petroleum oil degrading bacteria	85
4.4. Identification of the most potent petroleum hydrocarbon degrading bacterial isolate	
4.4.1. Morphological features	
4.4.2. Biochemical tests by using the Biolog technique	
4.5. Characterization of the most potent petroleum hydrocarbon degrading bacterial isolates	92
4.5.1. Estimation of lipase production	
4.5.2. Determination of plant growth promoting substances	
4.5.3. Biosurfactant production	
4.6. Parameters controlling the growth of the most potent degrading bacterial isolates	96
4.6.1. Temperature	96
4.6.2. PH	99
4.6.3. Agitation speed values	102
4.6.4.Different concentrations of petroleum oil	104

4.7. Degradation of petroleum oil by <i>P. aeruginosa</i> and <i>P. fluorescens</i>	
4.7.1 Bacterial counts	
4.7.2. Fluorescein diacetate (FDA) hydrolysis activity	109
4.7.3. Changes in pH values of liquid cultures	112
4.7.4. Degradation of petroleum oil in liquid cultures	113
4.8. Biodegradation and phytoremediation experiment	11.6
(Greenhouse experiment)	116
4.8.1. Effect of bioremediation and phytoremediation on plant	
parameters	117
4.8.1.1. Plant growth characteristics	118
4.8.1.2. Plant photosynthetic pigments	121
4.8.1.3. Plant proline content	123
4.8.1.4. Plant peroxidase activity	
4.8.2. Effect of bioremediation and phytoremediation on Chemical, physical and biological analyses of soil	
4.8.2.1 soil fluorescein diacetate hydrolysis assay (FDA)	128
4.8.2.2. Soil dehydrogenase activity (DHA)	131
4.8.2.3. Soil water-soluble phenols	
4.8.2.4. Soil pH	
4.8.2.5. Soil organic carbon	138
4.8.2.6. Residual analysis of petroleum oil in soil	140
4.8.2.6.1. Colorimetric determination	
4.8.2.6.2. Determination of aliphatic and aromatic petroleum	143
oil tractions by Gas chromatography 5 SUMMARY	150
6. REFERENCES	
7. ARABIC SUMMARY	

LIST OF TABLES

No.	Table	Page
Ι	The petroleum oil properties and composition	52
1	The chemical and physical analyses of the	0.2
	contaminated soils	83
2	Bacterial Count (Log CFU/ml) grown on MSM	QЛ
	supplemented with 1% of petroleum oil	04
3	Carbons sources utilization and chemical	l
	sensitivity assays of the two strains sh2 and sh3	90
	using (GN2 Microplate Biolog, 2000) system	30
4	Lipase amounts (U/ml) produced by P.	92
	aeruginosa and P. fluorescens	52
5	Indole acetic acid (IAA) and gibberellins (GA)	l
	amounts (μ g/ml) produced by <i>P. aeruginosa</i> and	03
	P. fluorescens	55
6	Emulsification activity of <i>P. aeruginosa and P.</i>	95
	<i>fluorescens</i> measured at wave length 540 nm	55
7	Bacterial population (Log CFU/ml culture) of <i>P</i> .	l
	<i>aeruginosa</i> and <i>P. fluorescens</i> cultures at	97
	different incubation temperature values	57
8	Bacterial population (Log CFU/ml culture) of <i>P</i> .	l
	aeruginosa and P. Fluorescens cultures at	100
	different culture pH values	100
9	Bacterial population (Log CFU/ml culture) of	l
	<i>P. aeruginosa</i> and <i>P. fluorescens</i> cultures at	102
	different agitation speed values	102
10	Bacterial population (Log CFU/ml) of P.	l
	aeruginosa and P. fluorescens in culture amended	104
	with different concentrations of petroleum oil	104

11	Microbial population of <i>P. aeruginosa</i> and <i>P.</i>	
	fluorescens in Liquid culture contained 1%	
	petroleum oil presented as LogCFU/ml	108
12	The values of (FDA) hydrolysis activity (µg	
	Fluorescein /ml culture) of P. aeruginos and	
	P. fluorescens cultures in presence of 1%	110
	petroleum oil	110
13	Changes in pH cultures of P. aeruginosa and	
	P. fluorescens in present 1% of crude oil at	112
	different intervals	112
14	Disappearance (%) of petroleum oil fractions in	
	MSM liquid cultures of <i>P. aeruginosa and</i>	111
	P. fluorescens	114
15	The chemical and physical analyses of the	
	uncontaminated soil collected from EL-Ismailia	110
	Governorate	110
16	Shoot heights and dry weights of (Phaseol	
	vulgaris L.) as affected by crude oil and its	110
	byproducts	119
17	Periodical change of chlorophyll and carotenoids	
	contents in plats (mg/g fresh weight) as affected	177
10	by petroleum oil contamination	122
18	Proline content in <i>Phaseolus vulgaris</i> L. plants as	
	affected by petroleum oil contaminated soil	124
10	(mg/g dry wt.).	121
19	Peroixdase activity in <i>Phaseolus vulgaris</i> L.	
	shoots as affected by petroleum oil	127
20	contaminated soil (U/g fresh weight).	±=/
20	Fluorescein diacetate hydrolysis activity (FDA) of	
	petroleum contaminated soil under	129
	bioremediation study (µg fluorescein /g soil)	125

21	Dehydrogenase activity (µg TPF/g soil) in	
	petroleum contaminated soil under	
	bioremediation study	132
22	Changes in total soluble phenols content of soil	
	under bioremediation study	134
23	Effect of bioremediation and phytoremediation	
	on Soil pH	136
24	Total organic carbon percent in soil under	
	bioremediation and phytoremediation study	139
26	Disappearance (%) of petroleum aliphatic	145
	hydrocarbons fraction from soil after 60 days of	
	treatment as percentage	
27	Disappearance % of petroleum aromatic	152
	hydrocarbons fraction from soil after 60 days of	
	treatment as percentage.	

LIST OF FIGURES

No.	Figure	Page
Ι	Chemical structure of some crude oil	
	components	7
Π	Explanation of bioremediation by using soil	
	microbes	19
III	Three modes of hydrocarbon uptake by	
	microorganisms with a petroleum oil phase	
	floating on the aqueous phase	26
IV	Mechanism of enhanced oil recovery by	
	biosurfactants	31
V	DCPIP reduction reaction.	36
VI	Uptake of hydrophobic hydrocarbon by	
	microorganisms	39
VII	Schematic of different mechanisms of	
	contaminant removal by plants	45
1	Bacterial population (Log CFU/ml culture) of	
	P. aeruginosa and P. fluorescens cultures at	
	different incubation temperature values	97
2	Bacterial population (Log CFU/ml) of	
	P. aeruginosa and P. fluorescens cultures at	
	different culture pH values	100

3	Microbial population (Log CFU/ml) of	
	P. aeruginosa and P. fluorescens in liquid	
	culture at different agitation speed values	102
4	Bacterial population (Log CFU/ml) of	
	P. aeruginosa and P. fluorescens in Liquid	
	culture contained different concentrations of	
	petroleum oil	105
5	Growth of P. aeruginosa and P. fluorescens in	
	liquid culture contained 1% petroleum oil	
	presented as Log CFU/ml culture.	108
6	The values of (FDA) hydrolysis activity (µg	
	fluorescein /ml culture) of P. aeruginosa and	
	P. fluorescens cultures in presence 1% of	
	petroleum oil	111
7	Changes in pH cultures of P. aeruginosa and	
	P. fluorescens in present of 1% petroleum oil	
	at different intervals	113
8	Disappearance percent (%) of petroleum oil	
	fractions in the MSM liquid culture of	
	Pseudomonas aeruginosa	114
9	Disappearance percent (%) of petroleum oil	
	fractions in the MSM liquid culture of	
	P. fluorescens	115

10	Shoot length of (Phaseolous vulgaris L.) as	
	affected by crude oil and its byproducts	119
11	Dry weights of (<i>Phaseolous vulgaris</i> L.) as	
	affected by crude oil and its byproducts	120
12	Periodical change of chlorophyll and	
	carotenoids (mg/g fresh weight) contents plants	
	as affected by crude oil	122
13	Proline content (mg/g dry wt.) in Phaseolus	
	vulgaris L. plants as affected by petroleum oil	
	contaminated soil.	124
14	Peroixdase (U/g Fresh weight) activity in	
	Phaseolus vulgaris L. shoots as affected by	
	petroleum oil contaminated soil.	127
15	Fluorescein diacetate hydrolysis activity (FDA)	
	of petroleum contaminated soil under	
	bioremediation study (µg fluorescein /g soil)	130
16	Dehydrogenase activity in petroleum	
	contaminated soil under bioremediation study	
	(µg TPF/g. soil)	132
17	Changes in total soluble phenols content of soil	
	bioremediation study	134

18	Effect of bioremediation and phytoremediation	
	on soil pH	137
19	Total organic carbon percent in soil under	
	bioremediation and phytoremediation study	139
20	Colorimetric determination of petroleum oil	
	residues in soil (mg/kg soil).	141
21	GC chromatograms of the aliphatic compounds	
	residues of petroleum oil in soil bioremediation	
	and phytoremediation study	148
22	GC chromatograms of the aromatic compounds	
	residues of petroleum oil in soil bioremediation	
	and phytoremediation study	155

LIST OF PICTURES	5
------------------	---

No.	Picture	page
1	DCPIP decolorization test as indicator for crude oil	87
	biodegradation.	
2	A-The colony morphology of Pseudomonas aeruginosa	89
	on king's agar and Gram stain.	
	B-The colony morphology of <i>Pseudomonas fluorescens</i>	
	biotype A on king's agar and Gram stain.	
3	Degradation of petroleum oil content in liquid cultures.	115
5	Degradation of periodean on content in infast cultures.	115

ABSTRACT

Attention has been paid in this study to use both bioremediation and phytoremediation to return back the petroleum contaminated soil to its origin condition. The current study are divided into three parts, the first was for the isolation of the most effective bacterial isolates in degrading the hydrocarbons from oil contaminated soil. These isolates were identified as Pseudomonas aeruginosa and Pseudomonas fluorescens biotype A. In this study both *Pseudomonas aeruginosa* and *Pseudomonas fluorescens* proved to secret lipase enzyme, indole acetic acid, gibberellic acid and biosurfactant. The second part was for the use of these bacterial isolates in degradation (bioremediation) of the petroleum oil in their culture medium amended with 1% v/v petroleum oil. Results revealed that both P. aeruginosa & P. fluorescens biotype A strains can grow in presence of the petroleum oil due to the increase of bacterial counts and the values of fluorescein diacetate hydrolysis (FDA) both along with increasing the incubation period. The slightly decreases in their cultures pH values refers to the degradation of petroleum oil. This trend revealed that both P. aeruginosa & P. fluorescens strains were able to degrade the petroleum oil and utilize it as carbon sole source for growth, energy and reproduction. Results also revealed that *Pseudomonas* aeruginosa and Pseudomonas fluorescens biotype A were the best petroleum oil degraders. The bioremediation behavior of *Pseudomonas aeruginosa* in laboratory was better than Pseudomonas fluorescens. Generally the degradation rate of petroleum oil was gradually increased with increasing the time of incubation with the two species, hence P. aeruginosa and P. fluorescens degrade 62.46 and 55.53 % of added petroleum oil, respectively, at the end of the experimental period. The third part was a greenhouse experiment to study the effect of both bioremediation and phytoremediation and their interactions on the petroleum oil contaminated soil through the response of common bean growth grown on this soil. The highest values of shoot heights, dry weight, chlorophyll and carotenoids contents were observed in plants cultivated in contaminated soil and inoculated with P. fluorescens. The phytoremediation by using common bean plant can be degraded petroleum oil in its rhizosphere. The plants cultivated in contaminated soil showed high significant proline amounts and peroxidase activity. Plants cultivated in contaminated soils and inoculated with P. aeruginosa or P. flouresence showed lower values of proline and peroxidase activity than that planted in contaminated and uncontaminated soil. The growth of common bean (Phaseolus vulgaris L.) and addition of petroleum hydrocarbon degraders viz. Pseudomonas aeruginosa and Pseudomonas fluorescens biotype A in petroleum oil contaminated soils improves the physical, chemical and biological properties of the soil and enhanced the degradation of petroleum oil. The study showed that the phytoremediation of crude oil contaminated soil by Phaseolus vulgaris only was not sufficient to degrade the hydrocarbons in soil whereas the multi-technique by using any of the petroleum oil degrading tested bacteria in combination with common bean plant showed the best degradation of petroleum oil in the contaminated soil. The bioremediation behavior of Pseudomonas fluorescens biotype A in the greenhouse was better than Pseudomonas aeruginosa.

Key words: bioremediation - phytoremediation - Phaseolus vulgaris - Pseudomonas aeruginosa - Pseudomonas fluorescens biotype A - petroleum contaminated soil.