EFFICIENCY OF SOME CONTROL AGENTS AGAINST AMERICAN BOLLWORM, Helicoverpa armigera (Hübner) AND NON TARGET USEFUL INSECTS

BY OMNIA SHEHATA GOMAA ABD ELSTTAR

A thesis submitted in partial fulfillment

Of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Agriculture

(Economic Entomology)

Plant Protection Department
Faculty of Agriculture
Zagazig University
2016

CONTENTS

No.	Subject	Page
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	3
1	Effect of emamectin benzoate, hexaflumuron and alpha cypermethrin on <i>Helicoverpa armigera</i>	3
2	1. Biochemical effects of emamectin benzoate, hexaflumuron and alpha cypermethrin on <i>Helicoverpa armigera</i> (Hübner).	11
3	Effects of emamectin benzoate, hexaflumuron and alpha cypermethrin on honeybees foragers	18
4	Toxicological and biological studies on	
	Chrysoperla carnea (Stephens).	24
III	MATERIALS AND METHODS	31
A	Toxicological and Biological studies on	
	Helicoverpa armigera larvae.	31
	Insecticides used.	31
	Insect culture.	34
	Methods.	35
	1. Toxicity on <i>H. armigera</i> eggs.	35
	2. Investigating larval toxicity.	35
	3. Latent effect.	37

В	Investigating the biochemical effects of the three	
	tested insecticides on H. armigera.	38
	1. Chemicals.	38
	2. Apparatus.	38
	3. Preparation of insects for analysis.	39
	4. Determination of total carbohydrates.	39
	5. Total proteins.	40
	6. Determination of Invertase activity.	40
	7. Determination of Trehalase activity.	41
	8. Determination of amylase activity.	42
	9. Transaminases determination.	43
C	Toxicity of emamectin benzoate, hexaflumuron	
	and alpha cypermethrin to honeybee foragers.	44
	The tested honeybee workers.	44
	a. Feeding toxicity.	44
	b. Direct contact exposure.	45
	c. Repellent effects.	46
D	Toxicological and Biological studies on	
	Crysoperla carnea (Stephens).	48
	a. Toxicity of emamectin benzoate,	
	hexaflumuron and alpha cypermethrin to	
	C. carnea eggs.	48

	b. Toxicity of emamectin benzoate,	
	hexaflumuron and alpha cypermethrin to	
	C. carnea larvae.	49
	c. Biological aspects of Chrysoperla carnea	
	(Stephens) on Helicoverpa armigera	
	(Hübner) and Sitotroga cerealella	
	(Oliver) eggs.	50
IV	RESULTS AND DISCUSSION	51
A	Toxicity of emamectin benzoate, hexaflumuron	
	and alpha cypermethrin to H. armigera.	51
	1. Toxicity to <i>H. armigera</i> eggs.	51
	2. Toxicity to <i>H. armigera</i> larvae (1 st	
	instar).	52
	3. Effect of sublethal concentration of the	
	tested insecticides on some biological	
	aspects of <i>H. armigera</i> .	60
В	Biochemical studies	77
	1. Carbohydrate hydrolyzing enzymes.	77
	2. Effect on SGOT and SGPT.	82
	3. Effect on total protein and total	
	carbohydrate.	86
C	Side effects of emamectin benzoate,	
	hexaflumuron and alpha cypermethrin on	
	honeybee foragers.	91

1. Toxic effect of emamectin benzoate	
hexaflumuron and alpha cypermethrin to	
honeybee foragers.	91
a. Feeding toxicity.	91
b. Direct contact toxicity.	96
2. Repellent effects of emamectin benzoate,	
hexaflumuron and alpha cypermethrin against honeybee foragers.	97
D Toxicological and Biological studies on	
Crysoperla carnea (Stephens).	109
1. Toxicity to eggs.	109
2. Toxicity to larvae.	112
3. Biological aspects of Chrysoperla	
carnea (Stephens) on Helicoverpa	
armigera (Hübner) and Sitotroga	115
cerealella (Oliver) eggs.	117
a- Incubation period.	117
b- Larval stage.	117
1) Larval duration.	117
- The first larvae instar.	117
- The second larvae instar.	118
- The third larvae instar	118
- Total larval duration.	121
2) Larval survival	121

	c- Pupa	al stage.	122
	d- Adu	lt stage.	122
		- Pre-oviposition period.	122
		- Oviposition period.	123
		- Post-oviposition period.	123
		- Female longevity.	123
		- Fecundity.	124
		- Fertility.	127
		- Hatchability	127
		- Male longevity.	127
\mathbf{V}	CONCLUSION		129
VI	SUMMARY		131
VII	REFERENCES		143
	ARABIC SUMM	MARY	

LIST OF TABLES

No.	Title	Page
1	Toxicity of emamectin benzoate, hexaflumuron and alpha cypermethrin to <i>H. armigera</i> eggs under laboratory conditions.	55
2	Toxicity of emamectin benzoate hexafumuron and alpha cypermethrin to 1 st instar larvae of <i>H. armigera</i> under laboratory conditions.	57
3	Latent Effect of LC ₂₅ of emamectin benzoate, hexaflumuron and alpha cypermethrin treated by feeding to 1 st instar larvae of the <i>H. armigera</i> .	63
4	Effect of LC ₂₅ of emamectin benzoate, hexaflumuron and alpha cypermethrin on the reproductive capacity and adult longevity of <i>H. armigera</i> .	71
5	Effects of LC_{50} of emamectin benzoate, hexaflumuron and alpha cypermethrin on Carbohydrate hydrolyzing enzymes of H . armgira.	80
6	Effects of LC_{50} of emamectin benzoate, hexaflumuron and alpha cypermethrin on SGOT and SGPT content in H . armgira	Ο 4
	larvae.	84

No.	Title	Page
7	Effects of LC ₅₀ of emamectin benzoate, hexaflumuron and alpha cypermethrin on Total protein and total carbohydrate content in <i>H. armgira</i> .	88
8	Toxicity of emamectin benzoate, hexaflumuron and alpha cypermethrin tested by feeding and directly contact against honeybee foragers under laboratory conditions (21-30 °C and 65±5 % RH.	93
9	Repellent activity of emamectin benzoate, hexaflumuron and alpha cypermethrin applied at field rate to sucrose syrup in flat plates placed at 150 meters away from the apiary at two hour intervals during the first day after insecticidal application.	98
10	Repellent activity of emamectin benzoate, hexaflumuron and alpha cypermethrin applied at field rate to sucrose syrup in flat plates placed at 150 meters away from the apiary at two hour intervals during the second day after insecticidal application.	99
11	Toxicity of emamectin benzoate, hexaflumuron and alpha cypermethrin to	
	Chrysoperla carnea (Stephens) eggs.	110

No.	Title	Page
12	Toxicity of emamectin benzoate,	
	hexafumuron and alpha cypermethrin to 1st	
	larval instar of Chrysoperla carnea	
	(Stephens)	114
13	Biological aspects of Chrysoperla carnea	
	(Stephens) on Helicoverpa armigera	
	(Hübner) and Sitotroga cerealella (Oliver)	
	eggs	120

LIST OF FIGURES

No.	Title	Page
1	Mortality regression lines of emamectin benzoate and alpha cypermethrin against eggs of <i>H. armegira</i> after 24 hr. of exposure	56
2	Mortality regression line of emamectin benzoate, hexaflumuron and alpha cypermethrin against 1 st instar larvae of <i>H. armegira</i> after 24hr. of exposure	58
3	Latent Effect of LC ₂₅ of emamectin benzoate, hexaflumuron and alpha cypermethrin treated by feeding to 1 st instar larvae of <i>H. armigera</i>	64
4	Effects of LC ₂₅ of emamectin benzoate, hexaflumuron and alpha cypermethrin on reproductive capacity and adult longevity of <i>H. armigera</i>	72
5	Effects of LC ₂₅ of emamectin benzoate, hexaflumuron and alpha cypermethrin on reproductive capacity and adult longevity of <i>H. armigera</i>	73
6	Deformation of pupae due to isecticidal application	74
7	Deformation of adult stage due to isecticidal application	75

No.	Title	Page
8	Effects of LC_{50} of emamectin benzoate, alpha cypermethrin and hexaflumuron on carbohydrate hydrolyzing enzymes of H .	
	armigera	81
9	Effects of LC ₅₀ of emamectin benzoate, hexaflumuron and alpha cypermethrin on SGOT and SGPT content in <i>H. armigera</i>	
	larvae.	85
10	Effects of LC ₅₀ of emamectin benzoate, alpha cypermethrin and hexaflumuron on total protein and total carbohydrates content in of	89
	H. armigera larvae	09
11	Mortality regression line of emamectin benzoate, alpha cypermethrin and hexaflumuron tested by contact against honeybee foragers under laboratory conditions (21-30 °C and 65±5 % RH.).	94
12	Mortality regression line of emamectin benzoate, alpha cypermethrin and hexaflumuron tested feeding against honeybee foragers under laboratory	74
	conditions (21-30 °C and 65 \pm 5 % RH.).	95
13	Repellent activity due to three tested	
	insecticidal application (at the first day).	102

No.	Title	Page
14	Repellent activity due to three tested insecticidal application (at the second day).	103
15	Mortality regression lines of emamectin benzoate, and alpha cypermethrin against eggs of <i>Chrysoperla carnea</i> (Stephens) after 24 hr., exposure	111
16	Mortality regression lines of emamectin benzoate, hexaflumuron and alpha cypermethrin against the 1 st instar larvae of <i>Chrysoperla carnea</i> (Stephens) after 24 hr., exposure.	115
17	Biological aspects of <i>Chrysoperla carnea</i> (Stephens) on <i>Helicoverpa armigera</i> (Hübner) and <i>Sitotroga cerealella</i> (Oliver) eggs.	125
18		126
	Subiroza cerealella (Olivor) czzs.	120

LIST OF PLATES

No.	Title	Page
1	Unhatched <i>H. armigera</i> eggs and deformation of larval stage due to	
	insecticidal application.	59
2	Deformations of <i>H. armigera</i> pupae and adults due to insecticidal application.	76
3	Repellent activity due to the three tested insecticides against honeybee foragers under laboratory conditions.	104
4	Repellent activity of the tested insecticides against honeybee foragers at 10 am (initial repellence) under semi-field conditions.	105
5	Repellent activity of the tested insecticides against honeybee foragers at 12 noon during the 1 st day of application under	
	semi-field conditions.	106
6	Repellent activity of the tested insecticides against honeybee foragers at 2 pm during the 1 st day of application under semi-field	
	conditions.	107

No.	Title	Page
7	Repellent activity of the tested insecticides	
	against honeybee foragers at 4 pm during	
	the 1st day of application under semi-field	
	conditions.	108
8	Dead larvae and unhatched Crysoperla	
	carnea eggs due to insecticidal	
	application.	116

ABSTRACT

This study is an attempt to investigate the efficiency of emamectin benzoate and hexaflumuron on the eggs and the 1st instar larvae of Helicoverpa armigera (Hübner), under the laboratory conditions hexaflumuron was ineffective when eggs were treated by field rate compared to emamectin benzoate and alpha cypermethrin that induced 100% mortality only when the recommended field rate was The LC₅₀ values of emamectin benzoate, applied. hexaflumuron and alpha cypermethrin on the 1st instar larvae were 0.004, 2.44 and 11.36 ppm, respectively based on formulated materials. The results showed that emamectin benzoate, hexaflumuron were more effective insecticides compared to alpha cypermethrin. The mean larval duration periods were 12.0, 13.7 and 5.0 days when treated with the LC₂₅ values of emamectin benzoate, hexaflumuron and alpha cypermethrin compared to 16.0 days recorded for control. It is obvious that the three tested insecticides induced highly significant increase in larval and pupal mortality. Emamectin benzoate and hexaflumuron showed severe reduction in adult fecundity, eggs fertility and hatchability. On the other hand, the LC₅₀ of emamectin benzoate, hexaflumuron and alpha cypermethrin recorded 0.044, 46.70, and 11.98 in feeding toxicity and 0.006, 1.51 and 0.609 by contact toxicity, respectively.

Emamectin benzoate proved to be the most potent insecticide, feeding and by contact to honeybee workers at LC₅₀, whereas the hexaflumuron was the least toxic one. The repellent activity of the tested insecticides was higher during the first day of application, Emamectin benzoate proved to be the most potent in repelling bee forgers initially and during the 1st day (98.81 %), meanwhile hexaflumuron was the least potent one, initially and in the two days, recording 91.68 % in the 1st day and 62.87 % in the second day.

In addition, data revealed that hexaflumuron treatment was safety to *Chrysoperla. carnea* eggs whereas; emamectin benzoate and alpha cypermethrin were highly toxic. Toxicity to *C. carnae* larvae at LC₅₀ recorded 0.005, 10.15 and 2.67 ppm of emamectin benzoate, hexaflumuron and alpha cypermethrin, respectively.