

Faculty of Agriculture, Alexandria University Department of Applied Entomology & Zoology

Quality assessment of fennel honey in Upper Egypt

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

> In Economic Entomology

> > Submitted by

Mostafa Mahmoud Mohamed Hassan

B.Sc. in Higher Institute for Agricultural and Instruction, Assiut University, 1992

2019

Contents

Achnowledgement	i
List of tables	ii
List of figures	iii
List of abbreviations	iv
Abstract	V
Chapter 1: INTRODUCTION AND AIMS OF THE STUDY	1
Chapter 2: REVIEW OF LITERATURE	3
2.1. Microscopical analysis	3
2.2. Physical properties	9
2.2.1. Colour	9
2.2.2. Electrical conductivity	10
2.2.3 . Specific gravity	11
2.2.4. Viscostiy	12
2.2.5. Total Soluble Solids (T.S.S.)%	13
2.2.6. Granulation	14
2.2.7. Fermentation	16
2.3. Chemical properties	18
2.3.1. Moisture content	18
2.3.2. Acidity	22
2.3.3. Sugars content	27
2.3.4. Hydroxy methyl furfural	31
2.3.5. Enzymes activity	34
2.4. Antimicrobial activity	37
Chapter 3: MATERIALS AND METHODS	41
3.1. Pollen spectrm in honey sample	41
3.1.1. sample collection	41
3.1.2. Preparation of reference slides	41
3.1.3. Qualitative analysis of pollen in honey sample	42
3.2. Physical properties of honey	43

3.2.1. Colour intensity value	43
3.2.2. Electriacl conductivity	
3.2.3. Specific gravity and Honey grades	
3.2.4. Viscosity	45
3.2.5. Total soluble solids	45
3.2.6. Granulation	45
3.2.7. Fermentation	45
3.3. Chemical properties	45
3.3.1 Moisture content	45
3.3.2. pH value	45
3.3.3. Free acidity, Lacton and Total acidity	45
3.3.4. Determentation of sugars	46
3.3.5. Hydroxy methyl furfurl (HMF)	46
3.4. Enzymes activity	46
3.4.1. Diastase number	46
3.4.2. Invertase activity	46
3.4.3. Glucose Oxidase activity	46
3.5. Antibacterial activity	47
3.5.1. Isolated bacterial strains	47
3.5.2. Preparation of honey solutions	47
3.5.3. Preparation of the nutrient agar	48
3.5.4. Preparation of the nutrient broth	48
3.5.5. Preparation OF 0.5 Mc Farland standars	48
3.5.6. Determination of Minimum Inhibitory Concentration (MIC)	48
3.5.7. Susceptibity testing of isolated bacteria	49
Chapter 4: RESULTS AND DISCUSSION	50
4.1 . Microscopical analysis	50
4.2. Physical properties	56
4.2.1. Colour	56
4.2.2. Electrical conductivity (EC)	60

4.2.3. Specific gravity	
3.2.4. Viscosity	64
4.2.5. Total soluble solids	65
4.2.6. Granulation	67
4.2.7. Tabulated Moisture	69
4.2.8. Fermentation	69
4.3. Chemical properties	70
4.3.1. Moisture content	
4.3.2. Acidity	
4.3.3. Sugars content	
4.3.4. Hydroxy methyl furfural (HMF)	
4.3.5. Enzyme activity	95
4.4. Antibacterial activity	
4.4.1. Minimum inhibitory concentrations (MIC) of fennel honey against the tested bacterial strains	
4.4.2. Susceptibity testing of tested bacterial strains	
Chapter 5: SUMMARY, CONCLUSION AND RECOMMENDATIONS	
Chapter 6: REFERENCES	
Arabic Summary	

List of Tables

Table	Title	Page
Table. 3.1	Colour designation of honey and range for each colour (a)	44
Table .4.1	Percentage of pollen types (%) in tested samples of fennel honey collected from Assiut governorate:	52
Table 4.2	Percentage of pollen types (%) in tested samples of fennel honey collected from Qena governorate	53
Table . 4.3	The most represented families were found by pollen spectrum of all fennel honey samples collected from 14 areas located within Assiut and Qena governorates:	54
Table. 4.4	Physical properties of fennel honey from Assiut Governorate Upper Egypt	57
Table. 4.5	Physical properties of fennel honey from Qena Governorate Upper Egypt	58
Table. 4.6	Statistical analysis of physical properties of tested localities (Assiut & Qena), Upper Egypt	60
Table . 4.7	Moisture content (%) in fresh fennel honey samples from Assiut and Qena Governorates	71
Table . 4.8	Acidity of fennel honey samples from Assiut Governorat, Upper Egypt	73
Table .4.9	Acidity of fennel honey from Qena Governorate, Upper Egypt	76
Table. 4.10	Statistical analysis of: acidity of fennel honey samples from (Assiut & Qena), Upper Egypt	77
Table .4.11	Sugar content (%) of Egyptian fennel honey samples obtained from Assiut Governorate	82
Table 4.12	Sugar content (%) of Egyptian fennel honey samples obtained from Qena Governorate	83
Table 4.13	Statistical analysis of sugar content (%) of Egyptian fennel honey samples obtained from the studied localities (Assiut & Qena), Upper Egypt	90
Table 4.14	Hydroxy methyl furfural (HMF) content of fennel honey samples from Upper Egypt	93
Table 4.15	Enzymes activity of Egyptian fennel honey samples from Upper Egypt	97
Table.4.16	Minimum inhibitory concentration (MIC) of fennel honey samples from Assiut Governorate against the tested bacterial strains	107
Table.4.17	Minimum inhibitory concentration (MIC) of fennel honey samples from Qena Governorate against the tested bacterial strains	108
Table.4.18	Statistical analysis of minimum inhibitory concentration (MIC) of Egyptian fennel honey samples Upper Egypt against the tested bacterial strains	109
Table.4.19	Assessement of the tested bacterial susceptibility to variour chemotherapeutic agents	117

List of Figures

Figure No.	Title	Page
	Map of Egypt (left), including Assiut Governorate (right top)	
Fig. 3.1	and Qena Governorate (right bottom), where fennel honey	42
	samples were collected	
Fig . 4.1	fennel pollen grains in tested honey samples	55
Fig .4.2	photomicrograph and equatorial view of fennel pollen grain Foeniculum vulgare Mill.	55
Fig. 4.3	Colour of fennel honey samples from Upper Egypt	56
Fig. 4-4	Electrical conductivity (EC) of fennel honey samples from Upper Egypt	61
Fig. 4-5	Specific gravity of fennel honey samples from Upper Egypt	63
Fig. 4.6	Viscosity of fennel honey samples from Upper Egypt	64
Fig. 4.7	Total soluble solids T.S.S% of fennel honey samples from Upper Egypt	66
Fig. 4-8	Granulation of fennel honey samples from Upper Egypt	68
Fig. 4.9	Moisture content of fennel honey samples from Upper Egypt	70
Fig. 4.10	pH value of fennel honey samples from Upper Egypt.	74
Fig. 4.11	Free acidity of fennel honey samples from Upper Egypt	75
Fig. 4.12	Lacton of fennel honey samples from Upper Egypt.	75
Fig. 4.13	Total acidity of fennel honey samples from Upper Egypt	76
Fig. 4.14	Fructose content of fennel honey samples from Upper Egypt	80
Fig.4.15	Glucose content of fennel honey samples from Upper Egypt	81
Fig. 4.16	Sucrose content of fennel honey samples from Upper Egypt	84
Fig. 4.17	Maltose content of fennel honey samples from Upper Egypt	85
Fig. 4.18	Reducing sugars content of fennel honey samples from Upper Egypt	85
Fig.4.19	Fructose to glucose ratio (F/G) of fennel honey samples from Upper Egypt	86
Fig.4.20	Glucose to water ratio (G/W) of fennel honey samples from Upper Egypt	86
Fig.4.21	Glucose to fructose ratio (G/F) of fennel honey samples from Upper Egypt	87
Fig. 4.22	Fructose – glucose (F-G) of fennel honey samples from Upper Egypt	88
Fig. 4.23	Glucose – water to fructose ratio ((G-W)/F) of fennel honey samples from Upper Egypt.	89
Fig. 4.24	Hydroxy methyl furfural (HMF) content of fennel honey samples from Upper Egypt	95
Fig. 4.25	Diastase activity of fennel honey samples from Upper Egypt	98

Fig. 4.26	Invertase activity of fennel honey samples from Upper Egypt	99
Fig. 4.27	Glucose oxidase activity of fennel honey samples from Upper Egypt	99
Fig. 4.28	Relation between T.S.S.% (X) and specific gravity (Y).The regression formula: Specific gravity = $0.0068 + 0.859$ (T.S.S.%) Where, $n = 42$, $r = 0.951^{**}$	102
Fig.4.29	Relation between moisture% (X) and T.S.S.% (Y) The regression formula: T.S.S.% = $0.9678 + 99.416$ (moisture%) Where, $n = 42$, $r = +0.939^{**}$	103
Fig.4.30	Relation between moisture% (X) and specific gravity (Y). The regression formula: Specific gravity = $0.007 + 1.5432$ (moisture%) Where, $n = 42$, $r = +0.956**$	104
Fig.4.31	Correlation between glucose% (X) and granulation (Y). The regression formula: Granulation = 0.1417 (glucose%) + 0.0174 Where, n= 42, r = 0.783^*	105
Fig.4.32	MIC of fennel honey samples fron Assiut Governorate against the tested bacterial starins	110
Fig.4.33	MIC of fennel honey samples from Qena Governorate against the tested bacterial strains	110
Fig.4.34	MIC of fennel honey samples from Upper Egypt against the tested bacterial strains	111
Fig.4.35	In Vitro minimum inhibitory concentration (MIC) of 7 honey against B. cereus(A), K. pneumonia (C)showing growth (arrows) and E.coli (B), S. aureus (D), Strept. Agalactiae (E), showing no growth (20%)	113
Fig.4. 36	In Vitro minimum inhibitory concentration (MIC) of 2 honey against K. Pneumonia showing growth (arrow) and 7 honey against B. cereus(A) and K. pneumonia(C),(25%).	113
Fig. 4.37	In Vitro minimum inhibitory concentration (MIC) of 2 honey against B. cereus(A), E.coli (B), S. aureus (D), Strept. Agalactiae (E), showing no growth and K. pneumonia (C)showing growth20%	114
Fig. 4.38	In Vitro minimum inhibitory concentration (MIC) of 10 honey against B. cereus (A), K. pneumonia (C), Strept. Agalactiae (E) showing growth and E.coli (B) and S. aureus (D), showing no growth (10%).	114
Fig.4. 39	In Vitro minimum inhibitory concentration (MIC) of 10 honey against B. cereus(A), E.coli (B), K. pneumonia (C), S. aureus (D), Strept. Agalactiae (E), showing no growth (20%).	115
Fig. 4.40	In Vitro minimum inhibitory concentration (MIC) of 8 honey against B. cereus(A), E.coli (B), K. pneumonia (C), S. aureus (D) showing growth and Strept. Agalactiae (E), showing no growth10%	115

Fig. 4.41	In Vitro minimum inhibitory concentration (MIC) of 5 honey against B. cereus(A),E.coli (B), S. aureus (D),Strept. Agalactiae (E),showing no growth and K. pneumonia (C) showing growth15%	116
Fig. 4.42	In Vitro minimum inhibitory concentration (MIC) of 3 honey against E.coli (B), K. pneumonia (C), S. aureus (D), Strept.	116
Fig. 4.43	agalactiae(E), showing growth and B. cereus(A)showing no growth (10%).In Vitro antimicrobial susceptibility testing of B. cereus (A)against 16 antimicrobial agents showing resistance and sensitivity	119
Fig. 4.44	In Vitro antimicrobial susceptibility testing of E. coli (B) against 16 antimicrobial agents showing multi-drug resistance	119
Fig. 4.45	In Vitro antimicrobial susceptibility testing of Strept. agalactiae(E) against 16 antimicrobial agents showing multi- drug resistance	120
Fig. 4.46	In Vitro antimicrobial susceptibility testing of S. aureus (D)against 16 antimicrobial agents showing multi-drug resistance	120
Fig. 4.47	In Vitro antimicrobial susceptibility testing of E. coli (B),S. aureus (D)and Strept. agalactiae (E)against 16 antimicrobial agents showing multi-drug resistance.	121

ABSTRACT

This study was conducted during flow season of fennel honey in the year, 2018, to assess some quality properties of the Egyptian fennel honey from Upper Egypt. Forty two honey samples were obtained from different apiaries located in Assiut and Qena Governorates, Upper Egypt. The results recorded that, all honey samples were classified as unifloral with a percentage ranging between 95 and 99% of fennel pollen. The general mean of colour intensity was 0.986, with range from 0.71 to 1.77. Optical density (O.D.). Electrical conductivity (EC) was 0.02 %, with range between 0.015 and 0.03 %. Specific gravity was 1.414 g/ml, with range from 1.407 to 1.424 g/ml. Viscosity was 133.007 poise, with range between 119.8 and 145.3 poise. Total soluble solids (T.S.S.) %. was 81.68 %, with range from 80.5 – 83.0 %. Granulation was 0.701 with range between 0.60 and 0.79. All fennel honey samples can considered as safe honey not able to ferment. Moisture content was 18.395%, with range between 17.0 and 19.5%. The total acidity was 38.61 meq. /kg, with range from 25.5 to 48.0 meq./kg. Fructose content was 44.571%, with range between 41.1 and 49.8%. Glucose content was 31.195%, with range from 24.4 - 33.2%. Trace amounts of sucrose were detected in most of fennel honey samples with an average of 0.9%. Maltose content was 1.176%, with range between 0.6 and 1.6%. Hydroxy methyl furfural (HMF) content was 4.96 mg/kg, with range from 1.92 to 7.68 mg/kg. The diastase number was 54.31 Goth units, with range between 8.5 and 150.0 Goth units. The invertase content was 167.34 unit/kg, with range from 117.6 to 219.3 unit/kg. Glucose oxidase activity was 393.13 µg H₂O₂ /h.g, with range between 311.4 and 481.58 µg H₂O₂ /h.g. The minimum inhibitory concentration of Egyptian fennel honey against Bacillus cereus, Escherichia coli, Klebsiella pneumonia, staphylococcus aureus and streptococcus agalactiae were 15.36, 14.29, 22.5, 11.79 and 15.36%, respectively. Egyptian fennel honey have potent antibacterial efficacy against the resistant examined bacterial strains.

Key words: Egyptian fennel honey, physical, chemical, properties, antibacterial