

Assessment of the concentration levels of some essential and toxic elements in food supplements collected from different local markets in Egypt

Thesis Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

Sherif Mahmoud Ahmed Elgammal B.Sc. in Chemistry Faculty of Science, Ain Shams University 2012

Under Supervision of

Associate Prof. Eman Hamed Sayed Ismail

Associate Professor of inorganic and analytical chemistry, Faculty of science, Ain shams university.

Prof Dr. Mona Abd El Aziz Khorshed

Chief Researcher and Technical Manager, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C.

2020

ABSTRACT

Name: Sherif Mahmoud Ahmed Elgammal

Title of the thesis: Assessment of the concentration levels of some essential and toxic elements in food supplements collected from different local markets in Egypt.

Position: Assistant Researcher

Degree: M.Sc., Faculty of science, Ain Shams University.

Food supplements are widespread in our country, especially whey protein, which is a by-product obtained from cheese manufacturing, contains high amounts of essential metals and amino acids. In this study, inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) were used to develop analytical method for determination of Co, Ni, Sn, Cr, Cu, Mn, Zn, Fe, Al, Na, Ca, Mg, Pb, Cd, and Hg in different food supplement samples collected in Egypt. Several validation parameters, such as quantification limits, recovery test, linearity (linear dynamic ranges and method linearity), accuracy (trueness and precision), and measurement uncertainty were studied. The practical limits of quantification were found to be 0.02, 0.03, 0.03, 0.2, 0.2, 0.2, 0.5, 0.5, 1, 1, 2, 5, 50, 50, and 50 mg/kg for Cd, Pb, Hg, Mn, Ni, Sn, Cr, Co, Fe, Zn, Cu, Al, Na, Ca, and Mg, respectively. The recoveries were ranged between (74.64-120 %) with relative standard deviations varied between (1.18 -13.07%). The method trueness was confirmed by using five certified reference materials from FAPAS and WEPAL, and all measured results were within satisfactory range and had an acceptable Z-score and recovery. The method precision, in terms of relative standard deviation, was below 5.78%. The measurement uncertainty for food

Abstract

supplements method expressed as expanded uncertainty in terms of relative standard deviation at 95% confidence level for all elements were $\leq 22.99\%$. The validated methods were used for the determination of metals content in 168 food supplement samples. The results showed that the maximum concentration (mg/kg) of Ca (400000) > Na (17410) > Mg (8798) > Zn (564.3) > Fe (491.4) > Al (246.8) > Mn (167.6) > Cu (18.21) > Cr (3.67) >Ni (3.56) > Sn (0.65) > Cd (0.335) > Pb (0.16), while Co and Hg were varied between not determinable (N.D.) and below the limit of quantification (< LOQ) in all food supplement samples. Based on the obtained results, this study proved that there are large differences were found between the measured and the defined values for some elements. In addition to some elements, such as Mn, Fe, Cr, Na, and Cu exist in the food supplement samples, but not defined on the label. The health risk assessment was evaluated for estimated daily intake (EDI), average body weight (70 kg), hazard quotient (HO), and hazard index (HI) using the FAO/WHO and US EPA recommendations. Based on the results of this work, the EDI and HQ values for most of elements in food supplement samples were lower than the reference dose (RfD) and 1, respectively, which indicates no adverse effects may occur. Also, the HI values for most of food supplement samples were lower than 1. Among the food supplement samples, there are some samples had EDI values slightly higher than the reference dose (RfD) values, and consequently there are HQ values >1. Besides, there are HI values higher than 1 in some food supplement samples. This indicates that more consumption of these products frequently may result in adverse noncarcinogenic health effect on consumers in the future.

Keywords: Food supplement, heavy metal, hazard quotient (HQ), hazard index (HI), Food safety, Food composition, ICP OES, GF AAS.

Table of Contents

	Page
Approval Sheet	-
Acknowledgment	
Abstract	
Aim Of Study	
List of abbreviations	
Publications	
Table of contents	
List of figures	
List of tables	
List of equations	
Chapter 1	
1. Introduction	1
Chapter 2	
Review of Literatures	5
2.1. Determination of heavy metal content in food supplements using atomic	5
absorption spectrometry	
2.2. Determination of heavy metal content in food supplements using	14
inductively coupled plasma	
2.3. Determination of heavy metal content in food supplements using other	21
different techniques	
	27
Chapter 3	
Experimental work	
3.1. Materials and reagents	27
3.2. Preparation of intermediate and working standard solutions	28
3.3. Apparatus and Equipment	32
3.4. Sampling	33
3.5. Samples digestion procedure	34
3.6. Determination	35
3.7. Health risk assessment	39

Chapter4

Results and Discussion	
4.1. Method validation	42
4.1.1. Practical limit of Quantification (LOQ)	43
4.1.2. Recovery tests	46
4.1.3. Linearity	50
4.1.4. Accuracy	70
4.1.5. Measurement Uncertainty	79
4.1.6. Quality Assurance	82
4.1.7. Control chart	83
4.2. Metals content in all food supplement samples	92
4.2.1. Macro essential elements	95
4.2.2. Micro and trace essential elements	97
4.2.3. Non-essential and toxic elements	101
4.3. Metals content in whey protein powder blend samples	105
4.4. Metals content in whey protein powder samples	108
4.5. Metals content in pre-workout supplement samples	111
4.6. Health risk assessment	114
Conclusion	117
Summary	119
References	125
Arabic Summary	
Arabic Abstract	

List of figures

Figure	Figure Title	Page
1	RSD% values for the elements at the LOQ levels	45
2	Relative standard deviation percentage of elements at different spike levels	47
3	Figure (3): ICP OES and GF AAS calibration curves, all calibration curves measured by ICP OES except calibration curve of (Pb) measured by GF AAS	53
4	Linear curves of method linearity at different spiking levels for the elements	62
5	The distribution of Z-score values in different certified reference materials	72
6	Relative standard deviation percentage for repeatability experiments	73
7	Relative standard deviation percentage for reproducibility experiments	76
8	Control charts for all elements	84
9	Percentage of contaminated, violated, and free samples	92
10	Percentage of frequentation for the metals in food supplement samples	93
11	Percentage of frequentation for the metals in whey protein powder blend samples	107
12	Percentage of frequentation for the metals in whey protein powder samples	109
13	Percentage of frequentation for the metals in pre-workout supplements	112

List of Tables

Table	Table Title	Page
1	The samples types, number of the samples, and their flavors	34
2	The microwave digestion program	35
3	Instrumental and method Parameters for ICP OES	37
4	Instrumental and method Parameters for GF AAS	38
5	LOQ for each element, number of replicates = 8, mean recovery and coefficient of variation (CV %)	
6	The recovery test of elements in food supplement by ICP OES and GF AAS, number of replicates =8	48
7	Correlation coefficients for all elements	52
8	Result of correlation coefficient and slope values of method linearity for food supplement samples	61
9	The results of the different Certified Reference Materials (CRMs) from FAPAS and WEPAL	71
10	Results of repeatability experiments	74
11	The results of the reproducibility experiments	77
	The results of the Standard Uncertainty, Relative Standard	
12	Uncertainty, degree of freedom, (t- test) experiments, degree of freedom = 23 , and t(tab) = 2.07	81
13	The results of the Relative Standard Uncertainty Components, Combined Uncertainty, Expanded Uncertainty, U standard preparation = 0.82 %, and U Sample processing = 10 %	82
14	Minimum and maximum concentration levels, mean and median, free samples, samples above the LOQ and less than LOQ, and frequencies number and percentages for all metals in all food supplement samples	94
15	Minimum and maximum concentration levels, mean and median, free samples, samples above the LOQ and less than LOQ, and frequencies number and percentages for all metals in whey protein blend samples	107

Minimum and maximum concentration levels, mean and median, free	
16 samples, samples above the LOQ and less than LOQ, and frequencies 110)
number and percentages for all metals in whey protein samples	
Minimum and maximum concentration levels, mean and median, free	
17 samples, samples above the LOQ and less than LOQ, and frequencies 113	3
number and percentages for all metals in pre-workout supplements	
Estimated daily intake (EDI), hazard quotient (HQ), and Hazard index	5
18 (HI) for intake of metals through food supplement samples	,

List of Equation

Equation	Equation Title	Page
1	Characteristic mass (CM) equation	39
2	The hazard quotient equation	39
3	Estimated daily intake equation	39
4	The hazard quotient equation	40
5	The hazard index equation	41
6	Relative standard deviations equation	45
7	The recovery equation	46
8	Standard deviation equation	46
9	Z-score equation	70
10	Standard Uncertainty equation	79
11	T-test equation	79
12	Uncertainty due to bias equation	79
13	Uncertainty due to bias equation	80
14	The total uncertainty combined equation	80
15	Expanded uncertainty equation	81