EPIDEMIOLOGY AND CONTROL OF WHEAT LEAF RUST DISEASE IN EGYPT

By

KHADEGAH MOHAMMAD ANIS AHMAD NAJEEB

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Cairo University, 2007 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Cairo University, 2013

> A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Ain Sham University

2020

ABSTRACT

Khadegah Mohammad Anis Ahmad Najeeb. "Epidemiology and Control of Wheat Leaf Rust Disease in Egypt". Unpublished Ph.D. Thesis. Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2020

Leaf rust caused by *Puccinia triticina* is an epidemic disease. The present study was concerned with the epidemiology and control strategy of wheat leaf rust disease in Egypt during 2014/16 growing seasons. Spore traps were conducted in four locations in Egypt, i.e, Kafr El-Sheikh, Sharqia, Beni Suef and Alexandria. The highest number of spores were found in March at Kafr El-Sheikh, where 1700 and 2576 spores/ month in the two growing seasons, respectively. While the lowest number was 607 spores in March at Beni Suef in the second season. Spore traps were located at four different distances, radiating from each of eight directions (E, NE, N, NW, W, SW, S, SE). In directions E, SW, S and SE, the dimensions of the spore trap did not allow the installation at the largest distances. While, in directions NW, W, N and NE, the dimensions of the spore trap more allow the spores installation at the largest distances. A total of 37 and 90 virulence phenotypes were respectively described in the three Governorates under greenhouse conditions. The two most common virulence phenotypes were BBBB and BBBT that found with high frequencies throughout the tow growing seasons. The most common race group was DK-- (13.51%) followed by race group TT--(10.81%) in 2014-15. On the other hand, race group BB-- (23.33%) was the highest frequency in 2015/16. Virulence frequency was very high against Lr 1, 2c, 10, 11, 16, 17, 21, 24 and 26. In contrast, virulence occurred at relatively low frequency against Lr 2a, 2b, 3, 3ka, 9, 18 and *30.* To study the effect of climatic factors on leaf rust incidence, ten wheat genotypes were screened against leaf rust, under field conditions at Kafer El-Sheikh, Sharqia and Beni Suef governorate. All the tested cultivars were susceptible showing terms of infection types of different levels of final rust severity. The values of final rust severity FRS%, r-value and AUDPC of most cultivars at Sharqia location were higher than in the two other locations. In general, the wheat genotypes Gemmiza-7, Sids-1, Thatcher and Morocco showed higher values of final rust severity %, Rvalue and AUDPC. However, the two resistant genotypes Giza-168 and Sakha-94 showed lower level of susceptibility and exhibited lower values of disease component. The average daily temperature during the four months of the study was closely related with the development and final rust severity%. The weather data indicated that most of the January and February nights of 2014/2015 were relatively cool (min. temperature <10°C) at wheat growing area. There was a big contrast in this regard with January and February of 2015/2016 at Kafr El-Sheikh, Sharqia and Beni Suef, which had relatively warm nights. Epidemic of wheat leaf rust disease started 10 to 16 days earlier during 2015/2016 rather than the 2014/2015. It depends on the favorability of weather conditions such as early warm seasons. Giza-168, Sids-13 and Sakha-94 cultivars showed lower levels of both FRS % and AUDPC which exhibited lower levels of losses as compared to the highly susceptible cultivar Gimmeza-7. The yield losses were significantly correlated with AUDPC. The cultivars Sids-1 and Gimmeza-9 showed higher levels of susceptibility to leaf rust disease. However, the average grain yield potential for both cultivars was similar to the highest yield commercial cultivars. This indicated that Sids-1 and Gimmeza-9 cultivars have high levels of tolerance to leaf rust infection under the Egyptian field condition. Spraying the highly susceptible wheat cultivar Gemmiza -7 with Acetyl salicylic acid (ASA) showed higher ability to control leaf rust as compared to Mono potassium phosphate (KH₂PO₄). In addition, the greatest effect was observed when sprayed twice. On the other hand, all fungicides applications resulted in lower disease severities and higher yields than untreated control. Spraying the highly susceptible wheat cultivar Gemmiza -7 with Amstar extra showed higher efficiency to control leaf rust as compared to Tilt. In addition, the greatest effect was observed when sprayed twice. The

electrolyte leakage and the activity of Catalase (CAT) and Peroxidase (PO) enzymes were significantly increased in susceptible wheat cultivars (Gemmiza-7) as compared to that of resistant cultivars (Gemmiza-10, sids-12, Giza-171, and Sakha-94). Polyphenol oxidase (PPO) activity was significantly decreased in resistant wheat cultivars compared with the susceptible ones. The accumulation of hydrogen peroxide (H_2O_2) was significantly increased in resistant cultivars (Sakha-94) compared with the susceptible one (Sids-1). H_2O_2 accumulate in guard cells and was also detected in mesophyll cells, especially in cell walls, surrounding the sites of infection. Microscopic observation of the host-pathogen interaction showed a higher number of the fungus germlings formed appressoria on the susceptible wheat cultivars as compared to resistant cultivar. Yellow formed auto fluorescence emission was observed which indicating a hypersensitive reaction (HR) against the pathogen invasion 24 h after inoculation. The occurrence of HR was detected in the resistant cultivar. in a height existence, than that of the susceptible one. In later stages of infection, all the cells beneath the flecks and pustules exhibit the yellow auto fluorescence. Cross sections of treated infected wheat leaves of susceptible and resistant cultivar revealed that the fungal hyphae showed less dispersion and less damage to the mesophyll cells of resistant cultivar as compared to susceptible cultivar. The susceptible treated samples showed intensive intercellular fungal hyphae causing severe damaged mesophyll cells with large pustules as compared to resistant cultivar. The bundle sheath cells began to collapse as result of invasion. On the other hand, resistant infected samples showed semi normal vascular bundles with less destructive phloem tissue and mesophyll cells.

Key words: Wheat, *Puccinia triticina*, Epidemiology, Virulence frequency, Yield losses, Host resistance, climatic factors, Induce resistance, Acetyl salicylic acid (ASA), Electrolyte leakage, Peroxidase (PO), H₂O₂.

CONTENTS

ACKNOWLEDGEMENT	
LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATION	
1. INTRODUCTION	
II.REVIEW OF LITERATURE	
1. Leaf rust disease epidemiology	
2. Monitoring of spore trapping	
3. Rust trap nursery and race analysis	
4. Quantitave epidemiological parameters of wheat leaf rust	
disease	
5. Meteorological factors in relation to wheat leaf rust	
development	
6. Yield losses	
7. Leaf rust disease management	
7.1. Host genetic resistance	
7.2. Induction of systemic acquired resistance (SAR)	
7.2.1. Phosphate salts as resistance inducers	
7.2.2. Acetyl salicylic acid (ASA) as a resistance inducer	
7.3. Controlling of wheat leaf rust disease by fungicides	
8. Biochemical changes associated with host resistance	
8.1. Electrolyte leakage (EL)	
8.2. Enzymatic activities as resistance markers	
8.2.1. Catalyase activity	
8.2.2. Peroxidase activity (PO)	
8.2.3. Polyphenol oxidase activity (PPO):	
9. Microscopical studies	
9. 1. Histochemical localization of reactive oxygen species	
9.2. Light microscopy	

	Page
9.3. Fluorescence microscopy	23
III.MATERIALS AND METHODS	24
1. Monitoring of rust fungal spores	24
2. Trap nursery and race analysis	25
2.1. Virulence frequency of <i>P. triticina</i> population	26
2.1.1. Isolation and Purification.	26
2.1.2. Race identification	26
2.1.3. Virulence frequency and gene efficacy	29
3. Assessment of epidemiological parameters of wheat leaf rust	
disease	29
3.1. Disease assessment	30
3.2. The final rust severity (FRS)	33
3.3. Average coefficient of infection (ACI)	33
3.4. Rate of leaf rust increase (r-value)	33
3.5. Area under disease progress curves (AUDPC)	34
4. Meteorological factors in relation to leaf rust development	34
4.1. Monitoring of weather conditions	34
4.2. Disease progress curves and statistical analysis	34
4.3. Monitoring of host characters	35
4.3.1. Effect of wheat age	35
4.3.2. Day-degree in relation to leaf rust appearance	35
4.4. Empirical model for predicting disease severity	35
4.5. Model to predict leaf rust epidemic under the field	
conditions. (Critical point)	36
5. Assessment of losses	36
5.1. Impact of host genetic resistance on yield losses	36
5.2. Role of induced resistance against leaf rust	39
5.3. Controlling leaf rust using fungicide	39
6. Biochemical changes and host genetic resistance	40
6.1. Electrolyte leakage	40
6.2. Activities of antioxidant enzymes	41

	Page
6.2.1. Extraction and assay of Catalase (CAT)	41
6.2.2. Extraction and assay of peroxidase and polyphenol oxidase	
enzyme activity	41
7. Microscopical investigations	42
7.1. Histochemical localization of H ₂ O ₂	42
7.2. Light Microscopy.	43
7.3. Fluorescence microscopy	43
8. Statistical analysis	44
IV.RESULTS	45
1. Monitoring of spore trapping	45
1.1.Relationship between wind direction and number of	
urediospores at four locations in Egypt spore trapping during	
February / March 2014-2016	45
2. Race analysis and geographical distribution	51
2.1. Number and frequency of <i>P. triticina</i> race groups collected	
from Egyptian wheat during 2014- 2016 growing seasons	56
2.2. Similarity of identified race groups at different geographical	
areas	57
2.3. Virulence frequencies and gene efficacy%	59
3. Quantitative epidemiological parameters	61
3.1. Final rust severity percentage (FRS %)	61
3.2. Rate of disease increase (r-value)	62
3.3. Area Under Disease Progress Curve (AUDPC)	63
4. Meteorological factors in relation to wheat leaf rust	
development	64
4.1. Monitoring of weather conditions	65
4.2. Monitoring and estimating of disease dynamics	69
4.2.1. Disease progress curves and statistical analysis	70
4.3. Monitoring of host characters	84
4.3.1. Effect of wheat age	84
4.3.2. Day-degree in relation to leaf rust appearance	84

	Page
4.4. Empirical model for predicting disease severity	95
4.5. Cultivars resistance to leaf rust	95
4.6. Evaluation of the available forecasting systems to predict the	
leaf rust epidemic under the field areas conditions (Critical point).	95
5. Disease Management	96
5.1. Impact of host genetic resistance on yield losses	96
5.1.1. Leaf rust incidence	96
5.1.1.1. Final rust severity (FRS %)	97
5.1.1.2. Area under disease progress curve (AUDPC)	97
5.1.2. Assessment of yield losses	98
5.1.2.1. Thousand Kernel Weight (TKW/g)	98
5.1.2.2. Grain yield per plot/kg	99
5.1.2.3. Regression between AUDPC and losses of grain yield	100
5.2. Induction of Resistance against wheat leaf rust disease	103
5.3. Controlling leaf rust disease using fungicide	105
6. Physiological processes and the host genetic resistance	107
6.1. Electrolyte leakage concentrations of Egyptian wheat	
cultivars infected with <i>Puccinia triticina</i>	107
6.2. Determination of antioxidant enzymes activity of Egyptian	
wheat cultivars infected with <i>Puccinia triticina</i>	109
7. Microscopically changes and the host genetic resistance	110
7.1. Detection of Reactive Oxygen Species (ROS)	110
7.2. Histopathological Alterations	111
7.2.1. Urediospores germination and appressorial formation	111
7.2.2. Hyphal growth and pustule formation	113
V. DISCUSSION	117
VII. SUMMARY	133
VIII. REFERENCES	141
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Pag
1	Wheat monogenic lines (Lr genes) used in this	
	study	25
2	Code of the five Egyptian differentials for Puccinia	
	triticina	2
3	Adult plant resistance response and severity for leaf	
	rust disease based on the modified Cobb's scale .	
	Peterson et al. (1948) and the reaction types by	
	Roelfs et al., (1992) and Singh et al., (2013)	3
4	Name, pedigree, and year of release of nine	
	Egyptian bread wheat genotypes	3
5	Trade name, common name, chemical formula and	
	rate of application of the two systemic fungicides	
	used in wheat leaf rust control under field	
	conditions	4
6	The number of uridiospores in Egypt spore trapping	
	at 4 locations during February and March 2014-	
	2016 growing seasons	4
7	Number and frequency (%) of Puccinia triticina	
	virulence phenotypes in the three Governorates	
	during 2014/2015 growing season	5
8	Number and frequency (%) of Puccinia triticina	
	virulence phenotypes in the three Governorates	
	during 2015/2016 growing season	54-
9	Virulence formula and frequency (%) of Puccinia	
	triticina race groups in Egypt during 2014-2016	5
10	Virulence Frequencies (%) of <i>Puccinia triticina</i> and	
	Gene efficacy (%) for leaf rust resistance gene in	
	Egypt during 2014-2016	6

11	Effect of wheat leaf rust infection expressed as final
	rust severity percentage (FRS%) of ten wheat
	genotypes under Egyptian field condition during
	2014 – 2016
12	Effect of wheat leaf rust infection expressed as (r-
	value) of ten wheat genotypes under Egyptian field
	condition during 2014 -2016
13	Effect of wheat leaf rust infection expressed as area
	under disease progress curve (AUDPC) of ten wheat
	genotypes under Egyptian field condition during
	2014 – 2016
14	The date of first appearance of leaf rust infection at
	different locations in Egypt during 2014-2016
	growing season
15	Disease severity (%) of leaf rust disease at different
	wheat ages in different locations in Egypt during
	2014-2016 growing seasons
16	Linearized models form* for analysis the disease
	progress data for Kafr El-sheikh location during
	2014-2016 growing seasones
17	Linearized models form* for analysis the disease
	progress data for Sharqia location during 2014-2016
	growing seasones
18	Linearized models form* for analysis the disease
	progress data for Bani Suef location during 2014-
	2016 growing seasones
19	The relationship of day-degree accumulation and
	wheat age at different locations in Egypt during
	2014-2016 seasons

20	The impact of leaf rust infection on grain yield per	
_•	nlot $(2 \times 2.5 \text{m})$ and 1000 kernel weight (g) for 9	
	Wheat cultivars under field conditions at Sids	
	Research Station in 2014 / 2015	99
21	The impact of leaf rust infection on grain yield per	
	plot $(2 \times 2.5 \text{m})$ and 1000 kernel weight (g) for 9	
	Wheat cultivars under field conditions at Sids	
	Research Station in 2015 / 2016	100
22	Effect of spraving acetyl salicylic acid (ASA) and	
	mono Potassium phosphate (KH_2PO_4) on leaf rust	
	disease development and yield component of	
	susceptible wheat cultivar (Gemmiza-7) at adult	
	stage under field condition through the growing	
	season (2014-2015)	104
23	Effect of spraying acetyl salicylic acid (ASA) and	
	mono Potassium phosphate (KH ₂ PO ₄) on leaf rust	
	disease development and yield component of	
	susceptible wheat cultivar (Gemmiza-7) at adult	
	stage under field condition through the growing	
	season (2015-2016)	105
24	Effect of spraying the systemic fungicides (Tilt and	
	Amstar extra) on leaf rust disease development and	
	yield component of susceptible wheat cultivar	
	(Gemmiza-7) at adult stage under field condition	
	through the growing season (2014-2015)	106
25	Effect of spraying the systemic fungicides (Tilt and	
	Amstar extra) on leaf rust disease development and	
	yield component of susceptible wheat cultivar	
	(Gemmiza-7) at adult stage under field condition	
	through the growing season (2015-2016)	107

LIST OF FIGUERS

Fig. No.		Page
1	Air spore trapping and spore count slide	24
2	Feekes scale of wheat development. Graphic by Jerry	
	Downs. Adapted from: Large (1954). Growth stages of	
	cereals: Illustration of the Feekes scale. Plant Pathology	
	3:128-129	31
3	The modified Cobb scale: A, actual percentage occupied	
	by rust uredinia; B, visual rust severities of the modified	
	Cobb's scale, after Peterson et al. (1948)	31
4	Number of urediospore in Egypt spore trapping at four	
	locations during February/March 2014-2016 growing	
	seasons	48
5	Relationship between wind direction and number of	
	urediospore at Kafr El-Sheikh location during February	
	and March 2015-2016	49
6	Relationship between wind direction and number of	
	urediospore at Beni Suef location during February and	
	March 2015-2016	50
7	Dendrogram of similarity for virulent and distribution of	
	Puccinia triticina race groups at three Governorates of	
	Egypt in 2014-15, Area 1= Kafr El-Sheikh, Area 2=	
	Sharqia, Area 3= Beni Suef	58
8	Dendrogram of similarity for virulent and distribution of	
	Puccinia triticina race groups at three Governorates of	
	Egypt in 2015-16, Area 1= Kafr El-Sheikh, Area 2=	
	Sharqia, Area 3= Beni Suef	58
9	Gene efficacy% for leaf rust resistance genes in Egypt	
	during 2014-2016	59

10	Daily wind speed (m/s), maximum & minimum daily	
	temperature °C, and maximum daily relative humidity (%)	
	during winter seasons 2014-2016 in Kafr El-Skeikh	
	region	66
11	Daily wind speed (m/s), maximum & minimum daily temperature C_{c} and maximum daily relative humidity (9/)	
	temperature °C, and maximum daily relative number (%)	
10	Deile mind meed (m/s) meetingen & minimum deile	0/
12	Daily wind speed (m/s), maximum & minimum daily	
	temperature °C, and maximum daily relative number (%)	(0
17	during seasons 2014-2016 in Beni suer region	08
15	Predicted () and observed (-) progress curve of wheat lear	
	rust on cultivars (a) Gemmiza-7, (b) Gemmiza-11 and (c)	
	Gemmiza-12 in Katr El-Sheikh location during 2014-2016	
	seasons. Prediction was made by computing a polynomial curve	
4.4	based on an apparent infection rate	75
14	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Sids-1, (b) Sids-12 and (c) Giza-168 in	
	Kafr El-Sheikh location during 2014-2016 seasons. Prediction	
	was made by computing a polynomial curve based on an	
	apparent infection rate	76
15	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Giza-171, (b) Sakha-94 and (c) Morocco in	
	Kafr El-Sheikh location during 2014-2016 seasons. Prediction	
	was made by computing a polynomial curve based on an	
	apparent infection rate.	77
16	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Gemmiza-7, (b) Gemmiza-11 and (c)	
	Gemmiza-12 in Sharqia location during 2014-2016 seasons.	
	Prediction was made by computing a polynomial curve based	
	on an apparent infection rate	78

17	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Sids-1, (b) Sids-12 and (c) Giza-168 in	
	Sharqia location during 2014-2016 seasons. Prediction was	
	made by computing a polynomial curve based on an apparent	
	infection rate	79
18	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Giza-171, (b) Sakha-94 and (c) Morocco in	
	Sharqia location during 2014-2016 seasons. Prediction was	
	made by computing a polynomial curve based on an apparent	
	infection rate.	80
19	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Gemmiza-7, (b) Gemmiza-11 and (c)	
	Gemmiza-12 in Beni Suef location during 2014-2016 seasons.	
	Prediction was made by computing a polynomial curve based	
	on an apparent infection rate.	81
20	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Sids-1, (b) Sids-12 and (c) Giza-168 in	
	Beni Suef location during 2014-2016 seasons. Prediction was	
	made by computing a polynomial curve based on an apparent	
	infection rate	82
21	Predicted () and observed (-) progress curve of wheat leaf	
	rust on cultivars (a) Giza-171, (b) Sakha-94 and (c) Morocco in	
	Beni Suef location during 2014-2016 seasons. Prediction was	
	made by computing a polynomial curve based on an apparent	
	infection rate.	83
22	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cvs. (a) Gemmiza-7, (b) Gemmiza-11 and (c)	
	Gemmiza-12 in north Delta (Kafr El-Sheikh) growing area	
	during 2014-2016	86

23	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cvs. (a) Sids-1, (b) Sids-12 and (c) Giza-168 in	
	north Delta (Kafr El-Sheikh) growing area during 2014-	
	2016	87
24	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Giza-171, (b) Sakha-94 and (c) Morocco	
	in north Delta (Kafr El-Sheikh) growing area during 2014-	
	2016	88
25	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Gemmiza-7, (b) Gemmiza-11 and (c)	
	Gemmiza-12 in east Delta (Sharqia) growing area during 2014-	
	2016	89
26	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Sids-1, (b) Sids-12 and (c) Giza-168 in	
	east Delta (Sharqia) growing area during 2014-	
	2016	90
27	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Giza-171, (b) Sakh-94 and (c) Morocco	
	in east Delta (Sharqia) growing area during 2014-2016	91
28	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Gemmiza-7, (b) Gemmiza-11 and (c)	
	Gemmiza-12 in south Delta (Beni Suef) growing area during	
	2014-2016	92

29	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Sids-1, (b) Sids-12 and (c) Giza-168 in	
	south Delta (Beni Suef) growing area during 2014-2016	93
30	Environmental-physiological time scale (degree-day) relative to	
	disease progress curve for determining first appearance of leaf	
	rust on wheat cv.s (a) Giza-171, (b) Sakha-94 and (c) Morocco	
	in south Delta (Beni Suef) growing area during 2014-	
	2016	94
31	Critical point of leaf rust disease incidence in different	
	locations in Egypt at 2014-2016.	96
32	Regression between area under disease progress curve	
	(AUDPC), 1000 kernel weight (TKW) and grain yield /per plot	
	(A) 2014/2015 and (B) 2015/2016	101
33	Disease progress curve for nine Egyptian wheat cultivers,	
	A (2014-2015) and B (2015-2016) growing seasons	102
34	Effect of host genetic resistance on Electrolyte leakage of four	
	Egyptian wheat cultivars (Sids-1, Gemmieza-7, Giza-171 and	
	Sakha-94) infected with P. triticina. Bares indicate standerd	
	errors	108
35	Effect of host genetic resistance on the activities of (a) Catalase	
	(CAT), (b) peroxidase (PO) and (c) polyphenol oxidase (PPO)	
	in infected wheat plants of four Egyptian wheat cultivars (Sids-	
	1, Gemmieza-7, Giza-171 and Sakha-94)	109
36	Light micrographs of leaf segments of susceptible and resistant	
	wheat plants infected with P. triticina. D & E: showing	
	localization of H2O2 (reddish-brown staining) at interaction	
	sites (arrows) in both mesophyll and guard cells surrounding	
	the infected cells at 120 h and (F) at 14 day post inoculation in	
	resistant wheat plants (Sakha-94) as compared to susceptible	
	wheat plants (Sids-1) A & B & C. bar= 50µm	101

37 Light micrographs showing the successive steps of rust infection of susceptible cultivar (A) 24 h after inoculation. (B, C, D, E), showing the inhibition of urediospores germination in resistant wheat plants (bar= 50µm)..... 112 38 Fluorescence micrographs of wheat leaves infected with P. triticina. A & B & C: hypersensitive reaction (HR) from mesophyll cells indicated by intense yellow auto fluorescence in resistant cultivar (Sakha-94) at 24 h and (D) at 14 days after inoculation as compare to susceptible wheat plant (E & F). (bar = 50µm)..... 112 39 Light micrograph of cross-sections of susceptible and resistant wheat leaves showing the less intercellular hyphae of P. *triticina*, and less damage caused to the mesophyll cells at 8 (D) and 14 days (E&F) after inoculation in resistant wheat cultivar, as compared to susceptible wheat samples (A&B&C) showing

####