

Study of the Contamination Levels of some Persistent Organic

Pollutants in Soil and Water in Egypt

Thesis Submitted

By

Abd El-Rahman Mohamed Ahmed Marzouk B. Sc. in Chemistry Faculty of Science, Ain Shams University 2012

In the Partial Fulfillment for the Requirement of the Master Degree in Chemistry

> Chemistry Department, Faculty of Science Ain Shams University

> > **Under Supervision of**

Prof. Dr. Mohamed Fathy El-Shahat Professor, Department of Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Yasser Mohamed Nabil Mostafa

Professor, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center

Dr. Ashraf Mohamed Sami Hassanin

Senior Researcher, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center

2020

Table of Contents

		Page
Approv	al Sheet	
	vledgment	
List of	abbreviations	
Table o	f Contents	
List of I	Figures	
List of '	Tables	
Aim of	Study	
Abstrac	.t	
Publica	tion	
Chapte	r 1	
1.	Introduction	1
Chapte	r 2	
2.	Review of Literatures	4
Chapt	er 3	
3.	Materials and methods	
3.1.	Chemicals, reagents and standard solutions used for	15
dioxin	analysis	
3.1.1	Chemicals	15
3.1.2	Reagents	15
3.1.3	Standard solutions and standard preparation	16
3.1.4	Apparatus	17
3.2.	Sampling	18
3.1.2.	Water Sampling	18
3.1.2.	Soil Sampling	23
3.3.	Methodology	
3.3.1	Water method	28
3.3.1.1	Filtration	28
3.3.1.2	Extraction	28
3.3.1.3	Clean up	28

3.3.2	Soil method	29
3.3.1.2	Extraction	29
3.3.1.3	Clean up	29
3.3.3	HRGC/HRMS	31
3.3.4	Quantitative determination	31
3.3.5	Dioxin and DL-PCBs calculation	32
Chapter		
4.	Results and discussion	35
4.1.	The quality control of the used methods	
4.1.1.	Repeatability and reproducibility	35
4.1.0		
4.1.2.	Measurement Uncertainty	43
4.2.	POPs Water Analysis	50
4.2.1.	PCDDs/PCDFs, dl-PCBs, and ndl-PCBs in irrigation water	50
and related to sources		
4.2.2.	Profiles of PCDDs/PCDFs, dl-PCBs, and ndl-PCBs	54
4.3.	POPs Soil Analysis	58
		00
4.3.1.	Concentrations and compositional profiles of PCDD/Fs and	
	Soil	58
4.3.2.	The relation between Atmospheric deposition, Water and	
	PCDD/Fs and PCBs	65
0		

Conclusion	68
Summary	69
References	72
Appendices	
Arabic Summary	
Arabic Abstract	

List of figures

Figure	Figure Title	Page
1	Map of the sampling sites in Egypt based on their GPS, sites adjacent to the industrial area, El-Giza, Bani Swef, El-Sharkeya, Alexandria, El-	
	Menofeya and El- Gharbeya, shown the concentrations of Dioxins in governorates	19
2	The WHO-TEQ pg/l of Sum PCDDs/PCDFs and PCBs in 6 governorates in water samples	53
3	Levels of ndl-PCBs (ng/l) in all governorates in water samples	54
4	The concentration of PCDDs/PCDFs congeners without ToxicityEquivalentFactor(pg/l)inwatersamples	55
5	The concentration of dl-PCBs congeners without Toxicity Equivalent Factor (pg/l) in water samples	56
6	The concentration of indicator PCBs congeners (pg/ml) in water sample	56
7	The concentration of PCDDs/PCDFs congeners with Toxicity Equivalent Factor WHO-TEQ (2005) pg/l in water samples	57
8	The concentration of dl-PCBs congeners with Toxicity Equivalent Factor WHO-TEQ (2005) pg/l in water samples	57
9	pg WHO-TEQ/g of PCDD/PCDFs in 6 governorates in soil samples	59
10	pg WHO-TEQ/g of dl-PCBs in 6 governorates in soil samples	60
11	pg WHO-TEQ/g of ndl-PCBs in 6 governorates in soil samples	61
12	The concentration of PCDD/PCDFs congeners without Toxicity Equivalent Factor (pg/g) in 6 governorates in soil samples	63

13 The concentration of PCDD/PCDFs congeners WHO-TEQ (2005) pg/g 63 in 6 governorates in soil samples.....

14	The concentration of dl-PCBs congeners without Toxicity	64
	Equivalent Factor (pg/g) in 6 governorates in soil	
	samples	
15	The concentration of dl-PCBs congeners WHO-TEQ (2005) pg/g	
	in 6 governorates	64

List of Tables

Table	Table Title	Page
1	Water sampling location from various Egyptian canals	20
2	Field observations and weather for water sampling sites	21
3	Soil sampling location from various Egyptian lands	24
4	Field observations and weather for soil sampling sites	25
5	PCDD/Fs congeners, IUPAC name and WHO-TEF established in 2005 (<i>Van den Berg et al, 2006</i>) for each congener	33
6	Values of Toxicity Equivalency Factor determined in 2005 (<i>TEF-WHO</i> ₂₀₀₅) for Dioxin-like Compounds	34
7	The repeatability and reproducibility experiments of Dioxins in water samples	37
8	The repeatability and reproducibility experiments of Dioxins in soil samples	38
9	The repeatability and reproducibility experiments of Dioxin like PCBs in water samples	39
10	The repeatability and reproducibility experiments of Dioxin like PCBs in soil samples	40
11	The repeatability and reproducibility experiments of Indicator PCBs in water samples	41
12	The repeatability and reproducibility experiments of Indicator PCBs in soil samples	42
13	The Uncertainty calculations of Dioxins in water and soil samples	46
14	The Uncertainty calculations of Dioxins like PCBs in water and soil samples	47
15	The Uncertainty calculations of Non-Dioxins like PCBs in water and soil samples	47

16	The Uncertainty calculations of Dioxins, Dioxin like PCBs and	48
	ndl-PCBs in water and soil samples	10
17	The proficiency tests (PTs) Z-Scores calculations of dioxins	49
	and dioxin like PCBs in different samples	
18	Levels of PCDDs/PCDFs, dl-PCBs and ndl-PCBs (ng/l) in twenty-four water samples collected from different irrigation canals which adjacent to industrial areas from six Egyptian governorates	52
19	ndividual and total concentrations (pg /g for PCDD/Fs and dl-PCBs, ng/g for ndl-PCBs) and total TEQWHO (pg WHO2005-TEQ/g) for PCDD/Fs and PCBs in soils from Egypt	66
20	The relationship between PCDD/Fs - PCBs and the distance between the site of sampling and potential sources (A spearman's correlation coefficient)	67

ABSTRACT

 Name: Abd El-Rahman Mohamed Ahmed Marzouk
Title of the thesis: Study of the Contamination Levels of some Persistent Organic Pollutants in Soil and Water in Egypt
Position: Assistant Researcher
Degree: M.Sc., Faculty of Science, Ain Shams University.

The contamination levels of PCDD/PCDFs and PCBs in irrigation water are the most rarely studied throughout the world. The major problem in Egypt is the lack of statistics about these contaminants of POPs in irrigation water and soil. Therefore, this study is the first comprehensive report to elucidate the estimation and sources of PCDD/PCDFs and PCBs in

Irrigation water and soil from Egypt. A total of 24 irrigated water samples were collected from different irrigation canals which are adjacent to industrial areas from six Egyptian governorates (Bani Swef, El-Giza, El-Sharkeya, El-Menofeya, El-Gharbeya, and Alexandria). The study shows that irrigation water canals were contaminated with low levels of PCDDs/PCDFs, which were 0.95 pgWHO-TEQ/l and the total of PCDD/PCDFs and dl-PCBs were 2.06 pgWHO- TEQ/l with contamination ranging between 0.88 to 2.97 pgWHO-TEQ/l while the levels of indicator PCBs were 18.52 ng/l and ranged between 0.39 to 165.6 ng/l. The most predominant dioxins congeners were HpCDD, OCDD, HpCDF, and OCDF while for dl-PCBs were PCB105 and PCB118, and for ndl-PCBs was PCB138.

At 36 sites of agricultural surface soil, the mean of concentrations of PCCD/Fs was found to be 171.9 pg/g these results below U.S. guideline value (1000pg/g). In dl-PCBs the mean was 3194.9 pg/g and the mean concentration of ndl-PCBs was found 8900 pg/g. OCDD/F and HpCDD/F were the predominant congeners in PCCD/Fs while in PCBs, PCB105 and PCB118 were the dominant congeners, where high chlorinated homologues

Abstract

Were higher concentrations than low chlorinated homologues that related with the solubility, volatility and rate of degradation of congeners.

The major sources for these contaminants in water were fire bricks followed by textile industries closer to the located sampling sites. The detected pattern was found to be similar to the patterns reported in the air by other studies The stationary phases which emitted of PCDD/Fs and PCBs were the major sources lead to contaminate the surface soil where the pattern of congeners from these sources it's the same profiles from soil. Although the concentrations of the studied POPs are found to be low in irrigated water, it may be considered as a potential source of soil pollution due to their accumulation process in the agricultural land and may lead to risk on human health by consuming the agricultural products from contaminated soil irrigated by contaminated water.

Keywords: PCDD/Fs; dl-PCBs; Indicator PCBs; irrigation water; agricultural soil; Industrials Area and Egypt.