ABSTRACT

Mona Sabry Ali: Biocontrol of Pathogens in Soft Cheese Using Bacteriophage. Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2018.

The study aims to throw some light on the recent health safety situation of some local white soft cheese varieties towards certain pathogenic species and identification them and some of their specific phages to practically assess the potential biocontrol of any pathogenic microbe that may be found in a certain market white soft cheese variety.

To achieve this study, a total of eighty different white soft cheese samples, 20 from each type namely, Baramilli, Domiati, Kariesh and Tallaga were randomly during the period of May - June 2014 from various markets located at Cairo. Samples were transported under aseptic conditions to the laboratory. Moreover, five sewage water samples were obtained from Fac. of Agric., Ain Shams Univ., and Shoubra EL-Kheima station of drinking and sewage water. The external surfaces of sampling were scrubbed with alcohol, flaming and taps were flushed. The obtained samples were taken in sterile amber glass bottle of 250 ml capacity and directly transferred to the Virology Lab., Agric. Microbiol. Dept., Fac. of Agric., Ain Shams Univ. in refrigerated container and then maintained at 4-8 °C. The microbiological analysis was carried out within 12 h of sampling, including bacteriophage isolation. Furthermore, Kariesh cheese was made from pasteurized skimmed buffalo's milk warmed at 40° C, inoculated with 2% of freshly activated bacterial yoghurt starter culture and then divided into 5 equal portions. The 1st portion was the control. The 2^{nd} , 3^{rd} , 4^{th} and 5^{th} portions were contaminated with equal levels (1%) Salmonella typhimurium suspension containing 10^5 colony forming unit (CFU)/ml followed by adding phage suspension 10⁸ plaque forming unit (PFU)/ml at the levels of nil, 1, 2 and 3% respectively. All portions were separately incubated at the same temperature up to curdling. The curds were cut and individually filled into stainless steel moulds lined with cheese cloth and consolidated by a slight pressure for 24 h. The blocks of curd were then cut, dry salted using 2% NaCl (w/w), packaged into plastic containers and at refrigerator $5\pm2^{\circ}$ C for periodically analyses along 14 days.

The surveying results indicated that, Baramilli cheese possessed the highest infection level (70%) with pathogens followed by Domiati or Kariesh (50% for each), while Tallaga cheese contained the lowest level of contamination with pathogens (40%). Twenty % of infected Baramilli cheeses were contaminated with one pathogenic specie, 20% with two species and 30% with three or four pathogenic species (30% for each). On the other hand, 30% of positive Domiati cheese samples were infected with one pathogen specie, while the rest infected samples (20%) were found to be contaminated with two pathogenic species. Nevertheless, all infected Kariesh cheese was observed to be contaminated with two pathogenic species. Moreover all infected Tallaga cheese was found to be contaminated with either one (20%) or two pathogenic strains (20%). Most cheese infected with E.coli was found in Baramilli cheese (60% with a log count ranged from 1.49 to 2.60 CFU/g) followed by Kariesh cheese (50% with a log count fluctuated from 1.66 to 2.62 CFU/g), Tallaga cheese (30% with a log count fluctuated from 1.55 to 1.75 CFU/g) and Domiati cheese (20% with a log count ranged from 1.11 to 1.32 CFU/g). Likewise, most of staphylococci were detected in Baramili cheese (50% with a log count ranged from 2.65 to 3.71 CFU/g) followed by Domiati cheese (40% with a log count ranged from 1.59 to 2.80 CFU/g), Kariesh cheese or Tallaga cheese (20% for each of them with a log count fluctuated from 2.06 to 2.88 CFU/g for the former and 2.81 to 4.01 CFU/g for the latter). While, Salmonella sp. has been found to possess of 30% of infected Kariesh cheese followed by Baramili cheese (20%). Whilst, any of Domiati cheese or Tallaga cheese came in the last order (10% for each). Baramilli cheese was the sole cheese which was contaminated with Listeria monocytogenes in all surveyed white soft cheese studied.

Identificationally, detected pathogen spices of SWSC using either biochemical methods or polymerase chain reaction (PCR) technique confirmed that, the detected *E.coli* was two strains namely *E. coli* 0121 and *E. coli* 0104:H21, Salmonella sp. was defined to strain of *S. typhimurium. Staphylococcus.* was found to be *Staph. aureus.* Moreover the strain of *L. monocytogenes* was stated.

Virologically, electron microscopy of *Salmonella* bacteriophage particles revealed that, the virus is long, curled contractile tail. The phage particle has an isometric head with diameter of about 91.11 nm and the tail has 23.07 nm in length. The phage assigned to family Myoviridae as indicated by the presence of along contractile tail. The *Salmonella* phage had highly stability at different temperature ranged from -20 °C to 42 °C for 7 days. The phage was gradually harmed as the thermal temperature increased, so that, full phage damage was occurred at 80°C or more. The virus lost ability to lyses *Salmonella* cells at pH values of 9, 10, 11 or 12. It was active only at pH values of 4, 5, 6, 7or 8. Spot test showing the bacterial lysis caused by virulent bacteriophage specific for *Salmonella typhimurium*.

The contamination of experimental Kariesh cheese with *S. typhimurium* led to weaken the ability of cheese curd to drain whey as explained from the dry matter (DM) content which decreased due to the presence of pathogen and increased by the pathogen elimination with bacteriophage, which resulted also to increase the protein /DM content. The ash content reduced by both reasons, namely the contamination with *S. typhimurium* and/or the spiking level of phage suspension. The presence of *S. typhimurium* slowed the LAB population and acid production by them.

In terms of health safety, although the number of pathogen microbe added was gradually reduced due to the acid developed by prolonging the cold storage period in the absence of phage, but it stilled present until the end of experimental period. While, the pathogen was completely eliminated within 7 days of cheese age when the phage suspension (10^8 PFU/mL) has been spiked at the level of 1% at least.

Finally, as a conclusion, the spiking of Kariesh cheese milk with 1% *Salmonella typhimurium* phage suspension (10^8 PFU/ml) is quite enough to eliminate this microorganism when it present at the level of 1% suspension containing 10^5 CFU /ml.

Key words: *Salmonella typhimurium* identification by polymerase chain reaction (PCR), Morphology particles of *Salmonella* bacteriophage examination by transmission electron microscope, cheese properties, Kariesh cheese properties.

CONTENTS

	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VI
LIST OF ABBREVIATIONS	VII
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Actual safety situation of local white soft chesses towards pathogenic bacteria.	
	4
2. Application of bacteriophages as biocontrol agents in food	9
2.1. Mode of action of bacteriophages in foods	13
2.2.Biocontrol of <i>E. coli</i> O157:H7 by bacteriophages	15
2.3.Biocontrol of <i>Campylobacter</i> by bacteriophages	16
2.4.Biocontrol of <i>Salmonellasp.</i> by bacteriophages	17
2.5.Bacteriophage to control <i>Listeriasp.contamination</i>	19
3.Advantages and disadvantages of application of bacteriophages	
as biocontrol agents in food	21
MATERIALS AND METHODS	23
1. Materials	23
1.1.Market white soft cheese samples	23
1.2.Pasteurized skimmed milk	23
1.3.Bacterial starter culture	23
1.4.Sodium chloride	23
1.5.Collection of pathogens bacteriophages	23
1.6.Bacteriological media	24
1.7.Potassium iodide	24
1.8.Iodine crystal	24
1.9.Chloroform, 99%	24
1.10.Egg-yolk tellurite emulsion	24
2.Experimental procedure	24

2.1.Preparation of bacterial starter cultures	24
2.2.Manufacturing procedures of Kariesh cheese	25
3.Analytical methods	25
3.1.Chemical analyses	27
3.1.1.Determination of gross composition contents	27
3.1.2.Determination of the salt content	27
3.1.3.Determination of titratable acidity	27
3.1.4.Measurement of pH value	27
3.2.Bacteriological analyses	27
3.2.1.Enumeration of lactic acid bacteria	27
3.2.2.Isolation of pathogens in collected market cheeses	27
3.2.2.1.Detection of Salmonella sp	27
3.2.2.2.Detection of <i>Staph.aureus</i>	28
3.2.2.3.Detection of <i>L.monocytogenes</i>	28
3.2.2.4.Detection of <i>E.coli</i>	28
3.2.3.Morphological characterization of pathogenic species	28
3.2.4.Biochemical tests of detected pathogenspecies.	29
3.2.4.1.Sugar fermentation test	29
3.2.4.2.Catalase test	29
3.2.4.3.Gelatin liquefaction test	29
3.2.5.Identification of detected pathogenic species	29
3.3.Virological analyses	30
3.3.1.Isolation and propagation of	
Salmonellatyphimuriumbacteriophages from sewage water	30
3.3.1.1.Assaying of Salmonellatyphimuriumbacteriophages	30
3.3.1.1.1.Qualitatively	30
3.3.1.1.2.Quantitatively	30
3.3.1.2. Preparation of crude Salmonellatyphimuriumphage	
suspension.	30
3.3.1.3.Preparation of <i>Salmonellatyphimurium</i> bacteriophage stock	
(single plaque)	31
3.3.1.4. Properties of Salmonellatyphimurium bacteriophage	31

3.3.1.4.1.Physical properties of	
Salmonellatyphimuriumbacteriophage virions	31
3.3.1.4.1.1.Thermal stability	31
3.3.1.4.1.2. Storage stability of Salmonellatyphimurium	
bacteriophage	32
3.3.1.4.1.3.pH stability of <i>Salmonella typhimurium</i> bacteriophage	32
3.3.1.4.2.Morphology properties	32
3.3.1.4.3.Statistical analysis	32
RESULTS AND DISCUSSION	33
PART I: DETECTION OF SOME PATHOGENIC MICROBES IN	
LOCAL WHITE SOFT CHEESES AND IDENTIFICTION THEIR	
AVAILABLE SPECIFIC PHAGES	33
1.Safety situation of some local soft cheese varieties towards	
certain pathogenic species	33
2.Biochemical specification of detected pathogenic species	38
3.Identification of detected pathogen species	40
4. Morphological characterization of detected pathogens	40
5.Identification of detected Salmonella sp. by polymerase chain reaction	
(PCR) technique	41
6.Phage screening in sewage water in relation to isolated pathogen	
strains	42
6.1.Electron microscopic shape of phage	42
6.2. Thermal persistence of phage	43
6.2.1.Direct sensitivity	43
6.2.2.Surviving duration of Salmonellatyphimuriumphage particles	
along 7 days at different temperatures	43
6.3. Stability of S. typhimurium phage under various pH values	44
6.4.Spot test	45
PART II: APPLICATION OF SALMONELLA BACTERIOPHAGE IN	
KARIESH CHEESE PRESERVATION	46
1. Physiochemical properties of Kariesh cheese	46
2.Bacteriological quality of Kariesh cheese	51

SUMMARY AND CONCLUSIONS	53
REFERENCES	58
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	The occurrence percentage and the log count range (CFU/g)	
	of every pathogen spice contaminated surveyed white soft	
	cheese in relation to cheese varieties during the period	
	expended from May to July 2014	38
2	Biochemical characteristics of detected pathogen strains	39
3	Identification of detected pathogens spices found in local	
	white soft cheeses	40
4	Spot test of Salmonella bacteriophage particles along	
	different temperature degrees for 7 days and pH values for	
	one day.	44
5	Physiochemical properties of Kariesh cheese as affected	
	either by the contamination with 1.0% Salmonella	
	typhimurium suspension (10^5 CFU/mL) and/or spiking with	
	different levels of its specific phage suspension (10^8)	
	PFU/mL) during cold storage period(CSP) for 14 days	48
6	Variance analyses of data given in Table (5).	49
7	Bacteriological quality (log CFU/g) of Kariesh cheese as	
	affected either by the contamination with 1.0% Salmonella	
	typhimurium suspension (10^5 CFU/mL) and/or spiking with	
	different levels of its specific phage suspension (10^8)	
	PFU/mL) during cold storage period(CSP) for 14 days	52

V

LIST OF FIGURES

No.		Page
1	Flow diagram of conventional Kariesh cheesemaking	
	contaminated with Salmonella typhimiurium and spiked	
	with its specific phage	26
2	The Percentage of contaminated samples of surveyed	
	white soft cheese with pathogens in relation to cheese	
	varieties during the period expended from May to July	
	2014	35
3	The Percentage of pathogen number contaminated	
	surveyed white soft cheese in relation to cheese varieties	
	during the period expended from May to July 2014	36
4	The Percentage of every pathogen spices contaminated	
	surveyed white soft cheese in relation to cheese varieties	
	during the period expended from May to July 2014.	37
5	Pictures of pathogens colony by light microscope	41
6	Picture of Salmonella typhimurium by polymerase chain	
	reaction (PCR) technique	41
7	Electron micrograph of purified Salmonella	
	bacteriophage negatively stained with 2% uranyl acetate	
	(Magnification X-80000).	42
8	Thermal persistence of Salmonella typhimurium phage	45
9	Spot test showing the bacterial lysis caused by virulent	
	bacteriophage specific for Salmonella typhimurium	47
10	Plaque assay showing identical morphological plaques	
	of Salmonella typhimurium	47

LIST OF ABBREVIATION

%	Percentage
/	Per
APC	Aerobic Plate Count
AOAC	Association of Official Analytical Chemists
°C	Degree Celsius.
Co.	Company
CSP	Cold storage period
DM	Dry Matter
e.g.	Exampli gratia (for example)
Е.	Escherichia
EOSQ	Egyptian organization for Standardization and Quality
et al.	And others
Fac.	Faculty
FDA	Food and Drug Administration ration
Fig.	Figure
GRAS	Generally Recognized As Safe
g	gram
L.	Listeria
LAB	Lactic acid bacteria
NaCl	Sodium chloride
NC	Not counted
ND	Not detected
nm	nanometer
No.	Number
PCR	polymerase chain reaction
PFU	Plaque forming unit
<i>S</i> .	Salmonella
sp.	Species
Staph.	Staphylococcus
SWSC	Surveyed white soft cheese

TATitratable acidityw/wWeight per weight