Abstract

Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by its increasing day by day. Also, there is numerous environmental problems being caused by chemical fertilizer overuse, agricultural practices are shifting toward the development of environmentally friendly N fertilizers.

The objective of this study was to investigate the ability of biogen and cyanobacteria as biofertilizers and arginine and glutamic acid as amino acids for substitution the normally used chemical fertilizer (urea) and to ameliorate the harmful effect induced by salinity on two wheat cultivars Sakha 93 (salt tolerant) and Gemiza 10 (salt sensitive).

Two pot experiments were carried out to study the effect of application of two biofertilizers (cyanobacteria and biogen) or two amino acids (glutamic acids and arginine) on wheat salt tolerant (Sakha93) and wheat salt sensitive (Gemiza10) grown under saline condition.

Experiment I: The impact of biofertilizer on salinized wheat growth and yield is shown by analyzing the obtained data. Results indicate a significant reduction in catalase, peroxidase activity and lipid peroxidation in leaves in presence of biogen or cyanobacteria. Application of biogen (250g/fed.) plus 200mM NaCl in the soil results in significant increase in plant growth and grain yield, concomitantly with an increase in photosynthetic pigments, total carbohydrates and protein content. Moreover, Biogen reduced Na⁺ content and increased N, P and K in the wheat shoots. In addition, the most yield qualities (Carbohydrates, protein content, wet, dry gluten and ash content, N, P and k content in grains) were improved in response to treatment with Biogen (250g/fed.) in presence of 200mM NaCl salinized soil. Furthermore, Scanning of protein profile of grains showed appearance and disappearance of some protein bands in response to the different biofertilizer treatments.

١

abstract

Experiment II: The impact of amino acids treatment on salinized wheat growth and yield is shown by analyzing the data of the pot experiment results. Results indicate reduction in catalase, peroxidase activity and lipid peroxidation in leaves with application of amino acid (glutamic or arginine). Application of arginine (presoaking in 2mM for 6h) in presence of 200mM NaCl in the soil results in significant increase in plant growth and grain yield, concomitantly with an increase in photosynthetic pigment, total carbohydrates and protein content. Moreover, arginine (presoaking in 2mM for 6h) reduced Na⁺ content and increased N, P and K in the wheat shoots. Also the most yield qualities (Carbohydrates, protein content, wet, dry gluten and ash content, N, P and K content in grains) were obtained with arginine (presoaking in 2mM for 6h) in presence of 200mM NaCl in the soil.

In addition, Scanning of protein profile of grains showed appearance and disappearance of some protein bands in response to the different amino acid fertilization treatments.

In conclusion, According to our results we recommend the using of biogen as biofertilizer rather than cyanobacterial biofertilizer, on the other hand, using the presoaking in arginine as amino acid rather than glutamic acid for partial substitution of urea (50%) for salty land (in the range of 100-200mM NaCl) cultivated with wheat Sakha 93 as (salt tolerant) and Gemiza 10 as (salt sensitive).

CONTENTS	Pages
Lists of Tables	U U
Lists of Figures	G
CHAPTER 1: INTRODUCTION AND REVIEW OF LITERATURE	
1.1. INTRODUCTION	1
1.1.1. Aims of the proposed study	5
1.2. REVIEW OF LITERATURE	. 6
1.2.1. Effect of salinity on plant growth and yield	6
1.2.2. Effect of biofertilizers on salinity stressed plant	12
1.2.3. Effect of some amino acids on salinity stressed plant	19
CHAPTER 2: MATERIALS AND METHO	DDS
2.1. MATERIALS AND METHODS	28
2.1.1. Biofertilizers used	28
2.1.2. Chemical compounds used	28
2.1.3. Soil chemical analysis	31
2.1.4. Studied Characters	31
1. Growth parameter	
1.1. Shoot and root length	31
1.2. Leaf area	31
1.3. Fresh and dry weights	31
2. Biochemical assays	
2.1. Estimation of photosynthetic pigments	32
2.2. Photosynthetic activity measured as leaf chlorophyll fluorescence	32

2.3. Estimation of carbohydrates	33
2.3.1. Direct reducing value	33
2.3.2. Total reducing value	33
2.3.3. Polysaccharides	34
2.4. Estimation of total soluble proteins	34
2.5. Enzyme assay	34
2.5.1. Assaying of catalase enzyme	35
2.5.2. Assaying of peroxidase enzyme	35
2.6. Determination of lipid peroxidation	35
2.7. Estimation of Protein profile	36
2.8. Yield and its component	39
2.8.1. Plant height at harvest time	39
2.8.2. Number of spike/m ²	39
2.8.3. Spike length	40
2.8.4. Number of grain/spike	40
2.8.5. Grain weight/spike	40
2.8.6. 1000-grain weight	40
2.9. Ash content	40
2.10. Wet gluten	40
2.11. Dry gluten	41
2.12. Hydration percentage	41
2.13. Determination of total phenolics content	41

3. Stastistical analysis	41
--------------------------	----

CHAPTER 3: RESULTS AND DISCUSSION

3.1. RESULTS	42
3.1.1. Preliminary experiment	42
3.1.2. Experiment I: Effect of biofertilizers application on growth and productivity	
of two wheat cultivars (Sakha 93 and Gemiza 10) grown under two levels of salinity	
stress (100 and 200mM NaCl) at different ages.	
1- 30-day old plants	45
2- 55-day old plants	50
3-70-day old plants	67
4- 85-day old plants	84
5- 120-day old plants: Yield and Yield component	97
3.1.3. Experiment II: Effect of amino acids (glutamic or arginine) application on	121
growth and productivity of two wheat cultivars (Sakha 93 and Gemiza 10) grown under	
two levels of salinity stress (100 and 200mM NaCl) at different ages.	
1- 30-day old plants	121
2- 55-day old plants	126
3-70-day old plants	144
4- 85-day old plants	162
5- 120-day old plants: yield and yield component	177
3.2. DISCUSSION	206
CHAPTER 4: SUMMARY AND REFERENCE	

4.1. SUMMARY	235
4.2. REFERENCE	243
4.3. ARABIC SUMMARY	١

LIST OF TABLES

No.	Tables	Page No.
1	Effect of different salinity concentrations on germination percentage of eight cultivars of wheat grains at 2- days old	42
2	Effect of different salinity concentrations on germination percentage of eight cultivars of wheat grains at 4- days old	42
3	Effect of different salinity concentrations on germination percentage of eight cultivars of wheat grains at 6- days old	43
4	Effect of different concentrations of glutamic acid on germination percentage of two wheat cultivars salt tolerant (Sakha 93) and salt sensitive (Gemiza 10) at 2, 4 and 6-day old	43
5	Effect of different concentrations of arginine on germination percentage of two wheat cultivars salt tolerant (Sakha 93) and salt sensitive (Gemiza 10) at 2, 4 and 6-day old	44
1.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on enzyme activity (catalase and peroxidase) (μ M/min/g FW) and lipid peroxidation (μ M/g FW) in leaves of 30-day old of wheat (Sakha 93) cultivated under salinity stress	46
1.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on enzyme activity (catalase and peroxidase) (μ M/min/g FW) and lipid peroxidation (μ M/g FW) in leaves of 30-day old of wheat (Gemiza 10) cultivated under salinity stress	47
2.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some growth criteria at 55-day old wheat (Sakha 93) cultivated under salinity stress	51
2.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some growth criteria at 55-day old wheat (Gemiza 10) cultivated under salinity stress	52
3.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on fresh and dry weights (g) at 55-day old wheat (Sakha 93) cultivated under salinity stress	53
3.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on fresh and dry weights (g) at 55-day old wheat (Gemiza 10) cultivated under salinity stress	54
4.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents (Chl a, Chl b, and Carotenoid) (mg/g) in fresh leaves weight at 55-day old of wheat (Sakha 93) cultivated under salinity stress	56
4.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) in fresh leaves weight at 55-day old of wheat (Gemiza 10) cultivated under salinity stress	57
5.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on photosynthetic activity measured as fluorescence (Fv/Fm) of leaves (55, 70 and 85-day old) of wheat plant (Sakha 93) cultivated under salinity stress	60
5.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on photosynthetic activity measured as fluorescence (Fv/Fm) of leaves (55, 70 and 85-day old) of wheat plant (Gemiza 10) cultivated under salinity stress	61

6.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, and Urea) on carbohydrates and protein content (mg/g.d.wt) estimated in shoot system at 55-day old of wheat (Sakha 93) cultivated under salinity stress	65
6.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, and Urea) on carbohydrates and protein content (mg/g.d.wt) estimated in shoot system at 55-day old of wheat (Gemiza 10) cultivated under salinity stress	66
7.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some growth criteria at 70-day old wheat (Sakha 93) cultivated under salinity stress	69
7.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some growth criteria at 70-day old wheat (Gemiza 10) cultivated under salinity stress	70
8.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on fresh and dry weights (g) at 70-day old wheat (Sakha 93) cultivated under salinity stress	71
8.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on fresh and dry weights (g) at 70-day old wheat (Gemiza 10) cultivated under salinity stress	72
9.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) in fresh leaves weight at 70-day old of wheat (Sakha 93) cultivated under salinity stress	73
9.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents (Chl a, Chl b, and Carotenoid) (mg/g) in fresh leaves weight at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	74
10.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, and Urea) on carbohydrates and protein content (mg/g.d.wt) estimated in shoot system at 70-day old of wheat (Sakha 93) cultivated under salinity stress	79
10.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, and Urea) on carbohydrates and protein content (mg/g.d.wt) estimated in shoot system at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	80
11.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some element (N, P, K and Na) contents (ppm) of dry shoot system at 70-day old of wheat (Sakha 93) cultivated under salinity stress	82
11.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some element (N, P, K and Na) contents (ppm) of dry shoot system at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	83
12.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some growth criteria at 85-day old wheat (Sakha 93) cultivated under salinity stress	85
12.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some growth criteria at 85-day old wheat (Gemiza 10) cultivated under salinity stress	86
13.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on fresh and dry weights (g) at 85-day old wheat (Sakha 93) cultivated under salinity stress	87
13.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on fresh and dry weights (g) at 85-day old wheat (Gemiza 10) cultivated under salinity stress	88
14.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) in fresh leaves weight at 85-day old of wheat (Sakha 93) cultivated under salinity stress	90
14.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) in fresh leaves weight at 85-day old of wheat (Gemiza 10) cultivated under salinity stress	91

15.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, and Urea) on carbohydrates and protein content (mg/g.d.wt) estimated in shoot system at 85-day old of wheat (Sakha 93) cultivated under salinity stress	95
15.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, and Urea) on carbohydrates and protein content (mg/g.d.wt) estimated in shoot system at 85-day old of wheat (Gemiza 10) cultivated under salinity stress	96
16.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some yield characters of wheat (Sakha 93) cultivated under salinity stress	98
16.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some yield characters of wheat (Gemiza 10) cultivated under salinity stress	99
17.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on carbohydrate, protein (mg/g.d.wt) and Phenol content estimated in grains of wheat (Sakha 93) cultivated under salinity stress	103
17.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on carbohydrate, protein (mg/g.d.wt) and Phenol content estimated in grains of wheat (Gemiza 10) cultivated under salinity stress	104
18.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some element (N, P, K and Na) contents (ppm) of wheat grains (Sakha 93) cultivated under salinity stress.	106
18.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some element (N, P, K and Na) contents (ppm) of wheat grains (Gemiza 10) cultivated under salinity stress.	107
19.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on wet, dry gluten, hydration percentage and ash content measured in wheat grains (Sakhs 93) cultivated under salinity stress.	109
19.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on wet, dry gluten, hydration percentage and ash content measured in wheat (Gemiza 10) cultivated under salinity stress	110
20.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on protein profile measured in wheat grains (Sakha 93) cultivated under salinity stress.	115
20.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on protein profile measured in wheat grains (Gemiza 10) cultivated under salinity stress.	117
21.a.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some important cations and anions concentration (meq/L) in the soil before and after sowing wheat plant cultivar (sakha 93)	119
21.b.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on some important cations and anions concentration (meq/L) in the soil before and after sowing wheat plant cultivar (gemiza 10)	120
22.a.	Effect of different amino acids and urea treatments on enzyme activity (catalase and peroxidase) (μ M/min/g FW) and lipid peroxidation (μ M/g FW) of leaves at 30-day old of wheat (Sakha 93) cultivated under salinity stress	122
22.b.	Effect of different amino acids and urea treatments on enzyme activity (catalase and peroxidase) (μ M/min/g FW) and lipid peroxidation (μ M/g FW) of leaves at 30-day old of wheat (Gemiza 10) cultivated under salinity stress	123
23.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on some growth criteria at 55-day old wheat (Sakha 93) cultivated under salinity stress	127

23.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on some growth criteria at 55-day old wheat (Gemiza 10) cultivated under salinity stress	128
24.a	Effect of different amino acids (glutamic or arginine) and urea treatments on fresh and dry weights (g) at 55-day old of wheat (Sakha 93) cultivated under salinity stress	129
24.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on fresh and dry weights (g) at 55-day old of wheat (Gemiza 10) cultivated under salinity stress	130
25.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 55-day old of wheat (Sakha 93) cultivated under salinity stress	132
25.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 55-day old of wheat (Gemiza 10) cultivated under salinity stress	133
26.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on photosynthetic activity measured as fluorescence (Fv/Fm) of leaves at (55, 70 and 85-day old) of wheat plant (Sakha 93) cultivated under salinity stress	136
26.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on photosynthetic activity measured as fluorescence (Fv/Fm) of leaves at (55, 70 and 85-day old) of wheat plant (Gemiza 10) cultivated under salinity stress	137
27.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrates content (mg/g.d.wt) of shoot system at 55-day old of wheat (Sakha 93) cultivated under salinity stress	142
27.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrates content (mg/g.d.wt) of shoot system at 55-day old of wheat (Gemiza 10) cultivated under salinity stress	143
28.a.	Effect of different amino acids (glutamic or arginine) treatments and urea on some growth criteria at70-day old wheat (Sakha 93) cultivated under salinity stress	146
28.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on some growth criteria at 70-day old wheat (Gemiza 10) cultivated under salinity stress	147
29.a.	Effect of different amino acids (glutamic or arginine) treatments and urea on fresh and dry weights (g) at 70-day old of wheat (Sakha 93) cultivated under salinity stress	148
29.b.	Effect of different amino acids (glutamic or arginine) treatments and urea on fresh and dry weights (g) at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	149
30.a.	Effect of different amino acids (glutamic or arginine) treatments and urea on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 70-day old of wheat (Sakha 93) cultivated under salinity stress	151
30.b.	Effect of different amino acids (glutamic or arginine) treatments and urea on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	152
31.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrates content (mg/g.d.wt) of shoot system at 70-day old of wheat (Sakha 93) cultivated under salinity stress	156
31.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrates content (mg/g.d.wt) of shoot system at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	157

32.a.	Effect of different amino acids and urea treatments on some element (N, P, K and Na) contents (ppm) of Shoot system at 70-day old of wheat (Sakha 93) cultivated under salinity stress	160
32.b.	Effect of different amino acids and urea treatments on some element (N, P, K and Na) contents (ppm) of Shoot system at 70-day old of wheat (Gemiza 10) cultivated under salinity stress	161
33.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on some growth criteria at 85-day old wheat (Sakha 93) cultivated under salinity stress	164
33.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on some growth criteria at 85-day old wheat (Gemiza 10) cultivated under salinity stress	165
34.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on fresh and dry weights (g) at 85-day old of wheat (Sakha 93) cultivated under salinity stress	166
34.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on fresh and dry weights (g) at 85-day old of wheat (Gemiza 10) cultivated under salinity stress	167
35.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old of wheat (Sakha 93) cultivated under salinity stress	169
35.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old of wheat (Gemiza 10) cultivated under salinity stress	170
36.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrates content (mg/g.d.wt) of shoot system at 85-day old of wheat (Sakha 93) cultivated under salinity stress	175
36.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrates content (mg/g.d.wt) of shoot system at 85-day old of wheat (Gemiza 10) cultivated under salinity stress	176
37.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on some yield characters of wheat (Sakha 93) cultivated under salinity stress	178
37.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on some yield characters of wheat (Gemiza 10) cultivated under salinity stress	179
38.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrate, protein (mg/g.d.wt) and Phenol content estimated in grains of wheat (Sakha 93) cultivated under salinity stress	184
38.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on carbohydrate, protein (mg/g.d.wt) and Phenol content estimated in grains of wheat (Gemiza 10) cultivated under salinity stress	185
39.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on some element (N, P, K and Na) contents (ppm) of wheat grains (Sakha 93) cultivated under salinity stress	187
39.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on some element (N, P, K and Na) contents (ppm) of wheat grains (Gemiza 10) cultivated under salinity stress	188
40.a.	Effect of different amino acids (glutamic or arginine) and urea treatments on wet, dry gluten, hydration percentage and ash content measured in wheat (Sakha 93) cultivated under salinity stress	190

40.b.	Effect of different amino acids (glutamic or arginine) and urea treatments on wet,	191
	dry gluten, hydration percentage and ash content measured in wheat (Gemiza 10)	
	cultivated under salinity stress	
41.a.	Effect of different amino acids treatments and urea on protein profile measured in	195
	wheat (Sakha 93) cultivated under salinity stress	
41.b.	Effect of different amino acids treatments and urea on protein profile measured in	198
	wheat (Gemiza 10) cultivated under salinity stress	
42.a.	Effect of some amino acids (glutamic or arginine) and urea treatments on some	204
	important cations and anions concentration (meq/L) in the soil before and after	
	sowing wheat plant cultivar (Sakha 93)	
42.b.	Effect of some amino acids (glutamic or arginine) and urea treatments on some	205
	important cations and anions concentration (meq/L) in the soil before and after	
	sowing wheat plant cultivar (Gemiza 10)	

LIST OF FIGURES

No.	Figures	Page No.
1.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on enzyme activity	48
	(catalase and peroxidase) (µM/min/g FW) in leaves of 30-day old of two wheat	
	cultivars (A) Sakha 93 and (B) Gemiza 10 cultivated under salinity stress.	
2.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on lipid peroxidation	49
	(µg MDA/g FW) in leaves of 30-day old of two wheat cultivars (Sakha 93and	
	Gemiza 10) cultivated under salinity stress	
3.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents	58
	(Chl a, Chl b, and Carotenoid) (mg/g) in fresh leaves weight at 55-day old of wheat	
	(Sakha 93) cultivated under salinity stress	
4.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents	59
	(Chl a, Chl b, and Carotenoid) (mg/g) in fresh leaves weight at 55-day old of wheat	
	cultivars (Gemiza 10) cultivated under salinity stress	
5.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on photosynthetic	62
	activity measured as fluorescence (Fv/Fm) of leaves (55,70 and 85-day old) of wheat	
	(Sakha 93) cultivated under salinity stress	
6.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on photosynthetic	63
	activity measured as fluorescence (Fv/Fm) of leaves (55, 70 and 85-day old) of wheat	
	(Gemiza 10) cultivated under salinity stress	
7.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents	75
, .	(Chl a, Chl b, and Carotenoid) (mg/g) in fresh leaves weight at 70-day old of wheat	70
	(Sakha 93) cultivated under salinity stress	
8.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents	76
0.	(Chl a, Chl b, and Carotenoid) (mg/g) in fresh leaves weight at 70-day old of wheat	
	(Gemiza 10) cultivated under salinity stress	
9.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents	92
	(Chl a, Chl b, and Carotenoids) (mg/g) in fresh leaves weight at 85-day old of wheat	1
	(Sakha 93) cultivated under salinity stress	
10.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on pigment contents	93
10.	(Chl a, Chl b, and Carotenoids) (mg/g) in fresh leaves weight at 85-day old of wheat	75
	(Gemiza 10) cultivated under salinity stress	
11.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on grain weight/spike	100
11.	(g) of wheat (Sakha 93 and Gemiza 10) cultivated under salinity stress	100
12.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on number of	100
12.	grain/spike (g) of wheat (Sakha 93 and Gemiza 10) cultivated under salinity stress	100
13.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on 1000-grain weight	101
15.	(g) of wheat (Sakha 93 and Gemiza 10) cultivated under salinity stress	101
14.	Effect of fertilization treatments (Cyanobacteria, Biogen, Urea) on protein profile	114
14.	measured in two wheat grains (A) Sakha 93 and (B) Gemiza 10 cultivated under	114
	salinity stress.	
15.	Effect of amino acids (glutamic and arginine) and urea treatments on enzymes	124
1.J.		124
	activities (catalase and peroxidase) (μ M/min/g FW) of leaves at 30-day old of two wheat cultivers (A) Sakha 03 and (B) Comize 10 cultivated under salinity stress	
16	wheat cultivars (A) Sakha 93 and (B) Gemiza 10 cultivated under salinity stress	105
16.	Effect of amino acids (glutamic and arginine) and urea treatments on lipid	125
	peroxidation (μ g MDA/g FW) of leaves at 30-day old of wheat (Sakha 93 and Comize 10) sultivised under solinity stress	
	Gemiza 10) cultivated under salinity stress	

(Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 55-day old of wheat (Sakha 93) cultivated under salinity stress	134
	135
(Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 55-day old of wheat	
(Gemiza 10) cultivated under salinity stress	
Effect of amino acids (glutamic or arginine) and urea treatments on photosynthetic	138
activity measured as fluorescence (Fv/Fm) of leaves at (55, 70 and 85-day old) of	
wheat Sakha 93 cultivated under salinity stress	
Effect of amino acids (glutamic or arginine) and urea treatments on photosynthetic	139
	153
	154
	171
of wheat Sakha 93 cultivated under salinity stress	
Effect of different amino acids (glutamic or arginine) and urea treatments on pigment	172
contents (Chl a, Chl b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old	
	180
weight/spike (g) of two wheat cultivars (Sakha 93 and Gemiza 10) cultivated under	
	180
	181
	194
cultivated under salinity stress	
	 (Sakha 93) cultivated under salinity stress Effect of amino acids (glutamic or arginine) and urea treatments on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 55-day old of wheat (Gemiza 10) cultivated under salinity stress Effect of amino acids (glutamic or arginine) and urea treatments on photosynthetic activity measured as fluorescence (Fv/Fm) of leaves at (55, 70 and 85-day old) of wheat Sakha 93 cultivated under salinity stress Effect of amino acids (glutamic or arginine) and urea treatments on photosynthetic activity measured as fluorescence (Fv/Fm) of leaves at (55, 70 and 85-day old) of wheat (Gemiza 10) cultivated under salinity stress Effect of amino acids (glutamic or arginine) treatments and urea on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 70-day old of wheat (Sakha 93) cultivated under salinity stress Effect of amino acids (glutamic or arginine) treatments and urea on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 70-day old of wheat (Gemiza 10) cultivated under salinity stress Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old of wheat Sakha 93 cultivated under salinity stress Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old of wheat Sakha 93 cultivated under salinity stress Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old of wheat (Gemiza 10) cultivated under salinity stress Effect of different amino acids (glutamic or arginine) and urea treatments on pigment contents (Ch1 a, Ch1 b, and Carotenoids) (mg/g) of fresh leaves weight at 85-day old